КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Дополнение к типу Sporozoa 1 страница
Отряд Пироплазмиды (Piroplasmida). Пироплазмиды — кровяные паразиты млекопитающих. Они вызывают у многих домашних животных тяжелые заболевания. Представители рода Piroplasma — мельчайшие паразиты красных кровяных клеток (рис. 49). В отличие от гемоспоридий они размножаются в эритроцитах путем деления надвое и никогда не накапливают в теле черного пигмента меланина. При заболевании пироплазмозом (болезнь, вызываемая видами рода Piroplasma) одним из характерных клинических признаков служит появление гемоглобина в моче, что связано с разрушением эритроцитов. Поэтому заболевания, вызываемые пироплазмами, часто в народе называют «кровомочкой». Передача пироплазм происходит при помощи кровососущих клещей, в теле которых пироплазмы претерпевают бесполое размножение путем простого и множественного деления. Ранее некоторыми авторами в теле клещей описывался половой процесс паразита. Однако эти наблюдения позднейшими исследованиями не подтвердились. Мельчайшие стадии развития паразита (около 1 мкм), сравнимые со спорозоитами гемоспоридий, проникают в слюнные железы клеща; при укусе и кровососании клещом рогатого скота попадают в кровяное русло млекопитающего, где в дальнейшем поражают эритроциты. Пироплазмозы широко распространены по всему земному шару. Не меньшее практическое значение как возбудители тяжелых заболеваний рогатого скота имеют виды рода Theileria, широко распространенные в Средней Азии и Закавказье. Стадии, паразитирующие в эритроцитах, еще мельче, чем у Piroplasma. Theileria поражают не только эритроциты, но и клеточные элементы ретикулоэндотелиальной системы, лимфоциты. В этих клетках и идет энергичное бесполое размножение паразита. Переносчиком у Theileria также служат кровососущие клещи. Предполагают, что в клеще паразит формирует гаметы и происходит половой процесс. Эти данные, однако, требуют серьезной проверки и уточнения. Как видно из изложенного, жизненный цикл пироплазмид существенно отличается от такового у кровяных споровиков, у которых чередуются стадии шизогонии, гаметогенеза и спорогонии. Вместе с тем электронно-микроскопические исследования последних лет показали большое сходство в строении кровяных стадий пироплазмид и зонтов споровиков. Это серьезный аргумент в пользу сближения пироплазмид со споровиками. Вопрос требует дальнейших исследований. ТИП КНИДОСПОРИДИИ (CNIDOSPORIDIA) Все книдоспоридии — паразиты. К ним принадлежат два класса — миксоспоридии (Myxosporidia) и актиномиксидии (Actinomyxidia). Первые почти исключительно паразиты рыб, вторые — паразиты малощетинковых кольчецов и сипункулид. Рассмотрим первый из названных классов. От споровиков книдоспоридии отличаются характером жизненного цикла. У них в отличие от споровиков отсутствует закономерное чередование шизогонии, полового процесса и спорогонии. Жизненный цикл книдоспоридии всегда начинается двухъядерным амебоидным зародышем. Споры — многоклеточные образования, и формирование их происходит в течение значительной части жизни паразита. Взрослые миксоспоридий, живущие в полостях органов, представляют собой амебообразные всегда многоядерные плазмодии, размеры которых варьируют от нескольких десятков микрометров до двух сантиметров (рис. 51). Споры миксоспоридий чрезвычайно разнообразны (рис. 52). Снаружи они одеты прочной оболочкой, состоящей у большинства миксоспоридий из двух соединенных плотным швом створок (отряд Bivalvulea) либо (что встречается значительно реже) из большего числа створок, от 3 до 6 (отряд Multivalvulea). Створки образуются за счет обособления небольших участков цитоплазмы с одним ядром каждый. У многих миксоспоридий створки спор обладают различными довольно длинными выростами (рис. 52, Д). Биологическая роль их сводится, вероятно, к увеличению поверхности, что способствует пассивному «парению» в воде. Внутри споры формируются стрекательные капсулы, число которых соответствует числу створок (от 2 до 6). В образовании каждой капсулы участвуют участок цитоплазмы и ядро (т. е. отдельная клетка). Внутри капсулы находится свернутая стрекательная нить. И наконец, в полости споры располагается амебоидный зародыш с двумя ядрами. Таким образом, спора миксоспоридий по сути дела многоклеточное образование. Споры из тела больной рыбы попадают в воду, заглатываются другой рыбой и в ее кишечнике под влиянием пищеварительного сока стрекательные нити с большой силой выбрасываются и вонзаются в стенку кишки. Створки споры раскрываются по шву, амебоидный зародыш выходит из споры, проникает через эпителий кишки в капилляры, и, по-видимому, током крови доставляется к окончательному месту своего развития, где вскоре в результате деления ядер превращается в многоядерный плазмодий. В последнем вскоре начинается обособление генеративных клеток и развитие спор. Много споров вызвал вопрос о половом процессе у миксоспоридий. Одно время принималось, что генеративное ядро, дающее начало панспоробласту, образуется в результате полового процесса — слияния двух ядер. В настоящее время наиболее вероятной представляется следующая форма полового процесса. Все ядра плазмодия (вегетативные и генеративные) диплоидны. Лишь при развитии спор происходит мейоз, в результате чего ядра, формирующие споры (в том числе и ядра амебоидного зародыша, стрекательных капсул и створок), оказываются галоидными. При выходе амебоидного зародыша из споры (или несколько ранее) ядра сливаются, образуя вновь диплоидное ядро. К этому и сводится половой процесс. Подобная форма полового процесса называется автогамией. Таким образом, и по характеру полового процесса, и по соотношению гаплоидной и диплоидной фаз ядра в жизненном цикле миксоспоридий резко отличны от споровиков. Последние представляют собой гаплонтов с зиготической редукцией, все стадии жизненного цикла, кроме зиготы, гаплоидны. У книдоспоридий дело обстоит как раз наоборот — ядра на протяжении всего цикла диплоидны и лишь ядра амебоидов (которые можно сравнить с ядрами гамет) гаплоидны. Однако вопрос о формах полового процесса у миксоспоридий требует еще дальнейших исследований. Многие виды миксоспоридий являются причиной массовой гибели рыб. Особенно чувствительны к заражению этими паразитами мальки. Очень опасен, например, для форелевых хозяйств миксоспоридий Myxosoma cerebralis, поражающий хрящи молодой рыбки и вызывающий искривление позвоночника. В результате возникает заболевание, называемое «вертежом». Рыбки начинают вращаться вокруг оси и вскоре погибают. При этом поражаются полукружные каналы. За последние годы обнаружено массовое заражение миксоспоридиями из рода Kudoa (отряд Multivalvulea) некоторых морских промысловых рыб. Эти паразиты вызывают у выловленных рыб автолиз мышечной ткани (разжижение) и делают рыбу непригодной для употребления в пищу. ТИП МИКРОСПОРИДИИ (MICROSPORIDIA) Относительно небольшой по числу представителей класс (около 300 видов) состоит исключительно из внутриклеточных паразитов. Наличие спор со стрекательной нитью служило основанием для сближения их с миксоспоридиями и включения в класс книдоспоридий. Однако исследования последних лет и, в частности, электронно-микроскопические наблюдения показали, что это сходство чисто внешнее, конвергентное. Споры миксоспоридий, как мы видели, — многоклеточные образования, тогда как споры микроспоридий — одноклеточные. Большинство микроспоридий — паразиты насекомых и других беспозвоночных, небольшое число видов — паразиты рыб. К ним относится один отряд—микроспоридии (Microsporidia). Размеры микроспоридий на всех стадиях жизненного цикла малы (редко достигают 10 мкм, чаще 4—6 мкм), что очень затрудняет исследование. В частности, вопрос о наличии у них полового процесса не может, считаться решенным. Некоторые микроспоридии (Nosema bombycis) ведут к массовой гибели гусениц тутового шелкопряда, вызывая болезнь, называемую пебриной. Другой вид того же рода — N. apis вызывает «понос» пчел, который тоже обычно завершается их гибелью. За последние годы проводятся интересные и перспективные работы, цель которых — разработка методов массового заражения микроспоридиями вредных насекомых — вредителей сельского хозяйства. Несколько видов микроспоридий паразитируют в рыбах, но вред их незначителен.
ТИП ИНФУЗОРИИ, ИЛИ РЕСНИЧНЫЕ (CILIOPHORA) К этому обширному типу (свыше 7000 видов) относятся простейшие, органоидами движения которых служат реснички, присутствующие обычно в большом количестве. Вторым важным и общим признаком инфузорий является присутствие в теле их по меньшей мере двух качественно различных ядер — крупного вегетативного ядра — макронуклеуса и гораздо более мелкого генеративного — микронуклеуса. Громадное большинство инфузорий, объединяемое в класс Ciliata, обладает ресничками в течение всей жизни (за исключением стадий инцистирования). Другая, гораздо меньшая группа инфузорий (класс Suctoria) лишь на определенных этапах жизненного цикла снабжена ресничками, остальное же время лишена органоидов движения. КЛАСС I. РЕСНИЧНЫЕ ИНФУЗОРИИ (CILIATA) Ротовое отверстие присутствует у всех инфузорий, за исключением некоторых эндопаразитических форм, поглощающих пищу всей поверхностью тела. Исходной и наиболее примитивной формой ротового аппарата следует считать его терминальное расположение на переднем конце, при правильном продольном расположении рядов ресниц и отсутствии специально дифференцированных ресничек, связанных с ротовым аппаратом (роды Holophrya, Prorodon, рис. 56). У более специализированных форм происходит смещение ротового аппарата на одну (брюшную) сторону тела (см. рис. 54). Часто при этом образуется более или менее глубокое впячивание (перистомальное впячивание, или перистом), на дне которого и открывается ротовое отверстие, ведущее в глотку и далее в эндоплазму. Одновременно с этим в области ротового отверстия дифференцируются ресницы, сливающиеся в мембранеллы, служащие для направления пищи к ротовому отверстию. Основу этой околоротовой цилиатуры (ресничного аппарата) составляют обычно три параллельно расположенные мембранеллы. Строение ротового аппарата у многих инфузорий различно, что связано с характером пищи. Многие инфузории питаются бактериями и другими мелкими органическими частицами. У них ротовое отверстие постоянно открыто, и непрерывно работающая околоротовая цилиатура загоняет в рот пишу, поступающую далее в глотку. У подобных инфузорий (инфузория туфелька) процесс захвата пищи происходит непрерывно, и, пока инфузория живет, она непрерывно питается. У других инфузорий ротовое отверстие открывается только в момент захвата пищи. К числу таких видов относятся довольно многочисленные хищники, питающиеся другими, обычно более мелкими простейшими. У хищных видов глотка часто окружена особым так называемым палочковым аппаратом, слагающимся из прочных эластичных палочек. Они составляют опору глотки при прохождении через нее иногда весьма объемистой пищи. Проглоченная пища попадает в эндоплазму, где происходит ее переваривание. На дне глотки в эндоплазме образуются капельки жидкости — пищеварительная вакуоль. Наполнившись пищей, вакуоль отрывается от глотки и увлекается током плазмы, описывая в теле инфузории определенный для данного вида инфузорий путь. Во время передвижения в эндоплазме пища переваривается под действием ферментов, поступающих из эндоплазмы внутрь вакуоли. Оставшиеся внутри вакуоли непереваренные остатки пищи выталкиваются наружу через находящееся обычно неподалеку от заднего конца тела отверстие — порошицу. У питающейся бактериями инфузории туфельки при комнатной температуре пищеварительные вакуоли образуются каждые 1,5—2 мин. Первые стадии пищеварения протекают при кислой, последующие при щелочной реакции. Интенсивность питания и пищеварения в большой степени зависит от температуры и других факторов среды. В эндоплазме часть усвоенной пищи откладывается в форме различных резервных веществ, среди которых особенное значение имеет гликоген. У громадного большинства инфузорий на границе между экто- и эндоплазмой имеются сократительные вакуоли. В наиболее простых случаях они представляют собой периодически пульсирующий пузырек, как это наблюдается у амеб и жгутиконосцев. Но у многих инфузорий строение сократительных вакуолей усложняется. У инфузории туфельки, например, они состоят из собственно вакуоли (центрального резервуара) и расположенных венчиком 5—7 приводящих каналов (см. рис. 54). Кроме того, резервуар при помощи тонкого выводящего канала сообщается с окружающей средой. Выделяемая жидкость собирается из цитоплазмы в приводящие каналы; последние сокращаются и опорожняют свое содержимое в центральный резервуар, который при этом раздувается (стадия диастолы). Далее сокращается сама вакуоль (систола) и жидкость из нее выталкивается наружу. Основная функция сократительной вакуоли — осморегуляция (с. 24). Промежуток между двумя пульсациями у инфузории туфельки при 16° С около 20 с. Частота сокращений зависит от температуры и количества солей в окружающей среде: чем больше в воде солей, тем реже темп пульсации. Объем выводимой через вакуоли жидкости велик; так, у инфузории туфельки с двумя вакуолями в течение 40—50 мин выделяется объем жидкости, равный объему тела простейшего. Основным путем выделения продуктов обмена веществ служит пелликула, через которую они удаляются путем диффузии. Многие инфузории способны жить при очень различных парциальных давлениях кислорода. Например, инфузория туфелька, при дыхании поглощающая значительное количество кислорода, может жить в среде, имеющей лишь следы О2. При этом меняется характер обмена, в котором преобладающее значение приобретают расщепительные процессы (гликолиз), идущие в отсутствие кислорода. Некоторые группы паразитических инфузорий (например, живущие в передних отделах желудка жвачных) всецело существуют за счет расшепительного обмена, и свободный кислород для них ядовит. Многие инфузории имеют специальные неподвижные осязательные реснички. В эндоплазме инфузорий лежит ядерный аппарат. Крупный макронуклеус богат хроматином (ДНП), у многих инфузорий он разнообразной формы, чаще шаровидной, яйцевидной, иногда лентовидной, четко-видной. У некоторых инфузорий макронуклеус бывает разбит на отдельные фрагменты различной величины. Количество ДНК в макронуклеусе превосходит таковое в микронуклеусе (который обычно бывает диплоидным ядром) в десятки, а нередко сотни и даже тысячи раз. Это богатство макронуклеусов ДНК, как показали исследования последних лет, зависит от того, что все или часть хромосом микронуклеуса при развитии из него макронуклеуса после конъюгации претерпевает многократное удвоение (репликацию) Благодаря этому вегетативное ядро становится по всем или по части хромосом высоко полиплоидным. Богатство макронуклеусов ДНК — черта, свойственная большинству инфузорий. Но интересно отметить, что существует небольшое число видов инфузорий, у которых разделение ядерного аппарата на микро- и макронуклеус отчетливо выражено, но макронуклеусы в отличие от большинства инфузорий неполиплоидные и содержат примерно столько же ДНК, что и микронуклеусы. Эти ставшие недавно известными факты представляют большой интерес, так как показывают, что полиплоидия макронуклеуса инфузорий, возникшая в процессе прогрессивной эволюции этого типа, отсутствует у низших его представителей и, очевидно, связана с интенсификацией функций ядра в клетке простейшего. Микронуклеус (их может быть один или несколько) сферической или яйцевидной формы. Различия между макро- и микронуклеусом не ограничиваются размерами и формой, но отличаются и функциями. Макронуклеус— ядро вегетативное. В нем происходит транскрипция — синтез на матрицах ДНК информационной и других форм РНК, которые уходят в цитоплазму, где на рибосомах осуществляется синтез белка. ДНК макронуклеуса способна также и к репликации. Микронуклеус не осуществляет вегетативных функций. В нем не происходит транскрипции (синтеза РНК), но хромосомы способны к удвоению (репликации), что бывает перед каждым делением (митозом). Поскольку хромосомы представляют материальный субстрат наследственной информации, то микронуклеус служит своеобразным «депо» наследственной информации, передаваемой из поколения в поколение. Размножение. Инфузориям свойственно бесполое размножение, осуществляемое путем поперечного деления, чаще всего в свободноподвижном состоянии (рис. 57). Размножение сопровождается делением обоих ядер. Микронуклеус делится митотически(табл. III, 1). Деление макронуклеуса, которое еще недавно описывали как амитоз на самом деле протекает своеобразно и, также как митоз, характеризуется удвоением(репликацией) ДНК. У многих инфузорий перед началом деления в макронуклеусе формируются хромосомы, и происходит их удвоение, как и при обычном митозе. Но деления ядра при этом не происходит. Удвоение числа хромосом без деления называется эндомитозом. После его завершения начинается процесс деления инфузории. Хромосомы в макронуклеусе перестают быть видимыми (происходит их деспирализация) инфузория и макронуклеус вытягивается и перешнуровывается. При этом ранее удвоившиеся наборы хромосом распределяются между дочерними ядрами. У других инфузорий при деление макронуклеусов эндометозы необнаружены, но у них также делению ядра предшествует репликация ДНК, т. е. на молекулярном уровне происходит процесс, характерный для митоза и обеспечивающий преемственность наследственной информации. Во время деления инфузории происходит реорганизация большинства цитоплазматических органоидов. Обычно у дочерних особей заново возникают ротовые аппараты, происходит образование новых ресничек. У многих инфузорий бесполому размножению предшествует инцистирование и деление происходит внутри цисты. При этом наблюдается дедифферснцировка органоидов движения, ротового аппарата. Самоделение при этом приобретает характер палинтомии (с. 42). Инфузории в цистах размножения делятся обычно не на 2, а на 4 или большее число особей. Во время этих быстро следующих друг за другом делений роста не происходит. Из цист выходят инфузории гораздо меньших размеров (соответственно числу делений), чем материнская. Развивается вновь цилиатура, органоиды захвата пищи. Инфузория энергично питается и растет, а затем вновь инцистируется и размножается. При бесполом размножении промежуток времени между двумя делениями бывает различен. При комнатной температуре инфузория туфелька делится 1—2 раза в сутки. Некоторые мелкие инфузории — 2— 3 раза в сутки, а инфузория трубач (Slentor) —2—3 раза в неделю. Темп бесполого размножения зависит от условий среды — температуры, обилия пищи и т. п.
Половой процесс и ядерная реорганизация. Бесполое размножение повторяется много раз подряд, но время от времени в жизненном цикле инфузорий происходит половой процесс, который носит характер конъюгации. Главное отличие конъюгации инфузорий от ранее описанных половых процессов заключается в том, что она представляет временное соединение двух инфузорий. Последние обмениваются частями своего ядерного аппарата, после чего расходятся. Полного слияния конъюгирующих особей не происходит, поэтому их нельзя приравнять к гаметам прочих простейших. Во время конъюгации инфузории сходятся попарно и чаще всего прикладываются друг к другу брюшной стороной (рис. 58). У некоторых видов на месте соприкосновения пелликула обеих особей растворяется и между конъюгантами образуется более или менее широкий соединительный цитоплазматический мостик. У других видов во время конъюгации целостность пелликулы не нарушается. Существенные изменения вовремя конъюгации претерпевает ядерный аппарат (рис. 58). Макронуклеус конъюгантов распадается на части и постепенно резорбируется в цитоплазме. Микронуклеус сначала делится дважды. Это мейоз, во время которого происходит редукция числа хромосом, и диплоидный комплекс их превращается в гаплоидный, далее три из четырех ядер разрушаются и резорбируются в цитоплазме, а четвертое снова делится. В результате каждый конъюгант обладает двумя ядрами, происшедшими из микронуклеуса. Это половые ядра — пронуклеусы. Одно из них (мигрирующее, или мужское) покидает конъюгант и переходит в соседнюю особь, где и сливается с единственным оставшимся в нем стационарным (женским) ядром; то же происходит и в другом конъюганте. Оба половых ядра (стационарное и мигрирующее) сливаются, и таким образом восстанавливается диплоидный комплекс хромосом. У некоторых инфузорий на мигрирующем ядре появляется на одном конце острый носик, на другом — хвостообразный вырост и оно по строению становится похожим на живчик, лишний раз подтверждая мужскую природу мигрирующего ядра (рис. 59). Так, к концу конъюгации каждый конъюгант имеет по одному ядру двойственного происхождения, или синкарион. Примерно в это время инфузории отделяются друг от друга. У разошедшихся конъюгантов (которые теперь называются эксконъюгантами) происходит процесс реконструкции нормального ядерного аппарата. Он довольно сложен и в деталях протекает неодинаково у разных видов инфузорий. Сущность его сводится к тому, что синкарион митотически делится один, два или три раза и часть ядер — продуктов деления — становится микронуклеусами, другая часть преобразуется в макронуклеусы. Процесс преобразования продуктов деления синкариона в макронуклеусы выражается, прежде всего в повышении содержания ДНК, в основе которого лежит многократная репликация макромолекул. В развивающемся макронуклеусе появляются многочисленные ядрышки, которые в микронуклеусах и синкарионе отсутствуют. После завершения реконструкции ядерного аппарата инфузории вновь приступают к бесполому размножению. Кроме конъюгации у инфузорий существуют и другие формы реорганизации ядерного аппарата, связанные с резорбцией старого и образованием нового макронуклеуса. Одна из них, наблюдаемая довольно часто и имеющая место у широко встречающегося вида инфузорий туфелек Paramecium aurelia, — автогамия. В отношении судьбы и поведения ядер она протекает сходно с конъюгацией. Отличие от конъюгации в том, что при автогамии не происходит временного объединения двух особей и все процессы протекают в пределах одной особи. Возникшие в результате третьего деления микронуклеуса два пронуклеуса (стационарный и мигрирующий) сливаются и образуют синкарион. Таким образом, автогамия — это процесс самооплодотворения, когда сливаются вновь только что разделившихся два сестринских ядра.
Дата добавления: 2015-04-25; Просмотров: 806; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |