Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Показатели надежности. Основные понятия в области технического обеспечения надежности




Основные понятия в области технического обеспечения надежности

Вопросы для повторения

  1. Перечислите основные статистические методы контроля качества.
  2. Для каких целей используются контрольные карты Шухарта?
  3. Для каких целей применяются диаграммы причин и результатов (схемы Исикава)?
  4. Какие этапы включает построение диаграмм парето?
  5. Как увязать показатели потребительского и производственного качества?
  6. Назовите пять основных этапов управления качеством.
  7. Какие функции включает система управления качеством?
  8. Каким требованиям должна удовлетворять система управления качеством?
  9. Каковы цели политики в области качества.
  10. Из каких этапов состоит жизненный цикл продукции?
  11. Что является целью статистических методов контроля?
  12. Назовите характеристику партии изделий при контроле по альтернативному признаку.
  13. Какие задачи решает статистический приемочный контроль по альтернативному признаку?
  14. Расскажите о стандартах статистического приемочного контроля.
  15. Что понимается под системой экономических планов и каково их значение?
  16. Для чего применяются планы непрерывного выборочного контроля?
  17. Какую роль играют контрольные карты в системе методов управления качеством?
  18. Для каких целей используются контрольные карты У.А. Шухарта?
  19. Для каких целей применяются диаграммы причин и результатов схемы Исикава)?
  20. Из каких этапов состоит построение диаграмм Парето?
  21. Какова роль стандартизации в управлении качеством?
  22. Какие стандарты включены в Государственную систему стандартизации Российской Федерации?

ГЛАВА 4. ВЫБОРОЧНЫЙ КОНТРОЛЬ ПРИ ИССЛЕДОВАНИИ НАДЕЖНОСТИ

Надежность представляет собой понятие связанное прежде всего с техникой. Его можно трактовать как “безотказность”, “способность выполнять определенную задачу” или как "вероятность выполнения определенной функции или функций в течение определенного времени и в определенных условиях".

Как техническое понятие “надежность” представляет собой вероятность (в математическом смысле) удовлетворительного выполнения определенной функции. Поскольку надежность представляет собой вероятность, для ее оценки применяются статистические характеристики.

Результаты измерения надежности доложены включать данные об объеме выборок, о доверительных границах, о процедурах выборочного исследования и др.

В технике применяется также понятие “удовлетворительное выполнение”. Точное определение этого понятия связано с определением его противоположности – “неудовлетворительного выполнения” или “отказа”.

Отказы системы могут быть обусловлены конструкцией деталей, их изготовлением или эксплуатацией.

В современных условиях большое внимание уделяется надежности электронного оборудования.

Общему понятию “надежности” противостоит понятие “собственно надежность” образца оборудования, которая представляет собой вероятность безотказной работы в соответствии с заданными техническими условиями при установленных проверочных испытаниях в течение требуемого промежутка времени. При испытаниях надежности измеряется “собственно надежность”. Она представляет по существу “операционную надежность” оборудования и является следствием двух факторов: “собственно надежности” и “эксплуатационной надежности”. Эксплуатационная надежность, в свою очередь, обусловлена соответствием аппаратуры ее использованию, порядком и способом оперативного применения и обслуживания, квалификацией персонала, возможностью ремонта различных деталей, факторами окружающей среды и др.

На каждую характеристику, подлежащую измерению, в технических условиях задается допуск, нарушение которого рассматривается как “отказ”. Допуск, определяющий отказ, должен быть оптимальным с необходимой надбавкой на износ деталей, т. е. он должен быть шире нормального заводского допуска. Поэтому заводские допуски устанавливают с учетом того, что детали со временем изнашиваются.

Основными понятиями, связанными с надежностью являются:

1. Исправность – состояние изделия, при котором оно в данный момент времени соответствует всем требованиям, установленным как в отношении основных параметров, характеризующих нормальное выполнение заданных функций, так и в отношении второстепенных параметров, характеризующих удобства эксплуатации, внешний вид и т. п.

2. Неисправность – состояние изделия, при котором оно в данный момент времени не соответствует хотя бы одному из требований, характеризующих нормальное выполнение заданных функций.

3. Работоспособность – состояние изделия, при котором, при котором оно в данный момент времени соответствует всем требованиям, установленным в отношении основных параметров, характеризующих нормальное выполнение заданных функций.

4. Отказ – событие, заключающееся в полной или частичной утрате изделием его работоспособности.

5. Полный отказ – отказ, до устранения которого использование изделия по назначению становится невозможным.

6. Частичный отказ – отказ до устранения которого остается возможность частичного использования изделия.

7. Безотказность – свойство изделия непрерывно сохранять работоспособность в течение некоторого интервала времени.

8. Долговечность – свойство изделия сохранять работоспособность (с возможными перерывами для технического обслуживания и ремонта) до разрушения или другого предельного состояния. Предельное состояние может устанавливаться по изменениям параметров, по условиям безопасности и т. п.

9. Ремонтопригодность – свойство изделия, выражающееся в его приспособленности к проведению операций технического обслуживания и ремонта, т. е. к предупреждению, обнаружению и устранению неисправностей и отказов.

10. Надежность (в широком смысле) – свойство изделия, обусловленное безотказностью, долговечностью и ремонтопригодностью самого изделия и его частей и обеспечивающее сохранение эксплуатационных показателей изделия в заданных условиях.

11. Восстанавливаемость – свойство изделия восстанавливать начальные значения параметров в результате устранения отказов и неисправностей, а также восстанавливать технический ресурс в результате проведения ремонтов.

12. Сохраняемость – свойство изделия сохранять исправность и надежность в определенных условиях и транспортировки.

Для предвидения отказов в будущем необходимы фактические данные о частоте отказов за время использования оборудования по назначению.

При обработке информации применяется величина обратная частости отказов “среднее время между отказами”.

Для исследования надежности применяются достаточно сложные аналитические методики. Например, при исследовании электронных систем инженер выбирает ряд ключевых характеристик, выбирает наиболее важную из них, выбирает варианты действий и один из этих вариантов, изучает условия работы и оценивает их.

В связи с высокими темпами современного научно-технического прогресса важно выбрать оптимальный момент для перехода от научных исследований и подготовительных работ к производству продукции. В условиях конкуренции удачно выбранное время запуска в производство является важным фактором, действующим в двух направлениях: “слишком ранний” запуск в производство может привести к таким же отрицательным последствия, как и “слишком поздний”.

Причинами изготовления ненадежной продукции могут быть:

  • отсутствие регулярной проверки соответствия стандартам;
  • ошибки в применении материалов и неправильный контроль материалов в ходе производства;
  • неправильный учет и отчетность по контролю, включая информацию об усовершенствовании технологии;
  • не отвечающие стандартам схемы выборочного контроля;
  • отсутствие испытаний материалов на их соответствие;
  • невыполнение стандартов по приемочным испытаниям;
  • отсутствие инструктивных материалов и указаний по проведению контроля;
  • нерегулярное использование отчетов по контролю для усовершенствования технологического процесса.

Математические модели, применяемые для количественных оценок надежности, зависят от “типа” надежности. Современная теория выделяет три типа надежности:

1. “Надежность мгновенного действия”, например, плавких предохранителей.

2. Надежность при нормальной эксплуатационной долговечности. Например, вычислительной техники. В исследованиях нормальной эксплуатационной надежности в качестве единицы измерения используют “среднее время между отказами”. Рекомендуемый в практике диапазон от 100 до 2000 часов.

3. Чрезвычайно продолжительная эксплуатационная надежность. Например, космические корабли. Если требования к сроку службы свыше 10 лет, их относят к чрезвычайно продолжительной эксплуатационной надежности.

При нормальной эксплуатационной надежности техническое предсказание надежности может быть теоретическим, экспериментальным и эмпирическим. При теоретических средствах испытания разрабатываю схему данной операции и проверяют соответствие схемы с помощью математической модели. Если схема не соответствует операции, вносятся уточнения до тех пор, пока соответствие не будет достигнуто. Это так называемое научное исследование.

Эмпирический подход заключается в выполнении необходимых измерений в отношении фактически выпускаемой продукции и выводах о надежности.

Экспериментальный подход занимает промежуточное положение между теоретическим и эмпирическим. При экспериментальном подходе используют и теорию и измерения. При этом широко применяют методы математического моделирования процессов, создавая на этой основе экспериментальные данные. После этого информация подвергается статистическому анализу с применением современных средств вычислительной техники, что обеспечивает надежность и достоверность выводов.

Любому виду испытания предшествует план эксперимента.

Поскольку надежность является вероятностной характеристикой, количественные оценки используются для оценки “средней надежности”, рассчитанной на основе выборок из всей совокупности, а также для предсказания будущей надежности. Надежность исследуется с помощью статистических методов и поддается уточнению с их помощью.

Следует отметить, что продолжительность службы не является единственным показателем эксплуатационных свойств.

В ряде случаев надежность можно характеризовать другими показателями (километраж пробега, продолжительность активного использования и др.) продолжительность службы изделий зависит как от условий изготовления, так и условий эксплуатации.

Надежность многих изделий может быть выявлена в условиях их потребления. Научно обоснованная система наблюдения за эксплуатацией изделий позволяет выявить дефекты, обусловленные нарушениями технологического процесса у производителя.

Производитель должен:

  • применять статистический контроль качества;
  • проверять через определенные интервалы состояние управляемости процессов;
  • стремиться к повышению качества и надежности выпускаемого оборудования;
  • обеспечить правильное понимание требований заказчика и удовлетворения их.

Анализ различных определений надежности, имеющихся в литературе, приводит к обобщенному выводу,что под надежностью понимают безотказную работу изделий при регламентированных условиях эксплуатации в течение определенного периода времени.

Наибольшее распространение в исследованиях надежности получил показатель - интенсивность отказов. Он обозначается (лямбда):

,

где

n – число выбывших из строя изделий;

N – общее число изделий;

– среднее время испытаний.

Среднее время испытаний определяется по формуле:

,

где

ni – число изделий в испытательной группе;

ti – продолжительность испытаний данной группы.

Если количество изделий, выбывших из строя превышает 5-10%, то в расчет вводится корректива:

,

где

– количество отказавших изделий в данной группе;

– количество отказов за одно и тоже время испытаний;

– продолжительность испытаний для вывода изделия из строя.

Для расчета средней интенсивности отказов важно выбрать правильный интервал времени, так как обычно плотность отказов меняется во времени.

Пример. При испытании некоторой детали электронной аппаратуры может определяться через 1000-2000 часов. Проводится испытание 4 групп по 250 изделий в течение 2000 часов.

Результаты испытаний следующие:

№ строк Вышло из строя через Всего вышло из строя
  500 час. 1000 час. 1500 час.  
         
      -  
    -    
4 2 2 - 4

Рассчитаем :

часов.

Всего за время испытаний вышло из строя 20 изделий (7+5+4+4)

Тогда на 1000 часов.

Детали и узлы могут выходить из строя из-за дефектов производства и по другим причинам.

При постоянном уровне частоты отказов за единицу времени распределение вероятностей промежутков безотказной работы выражается показательным законом распределения эксплуатационной долговечности.




Поделиться с друзьями:


Дата добавления: 2015-04-29; Просмотров: 468; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.111 сек.