Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Растровый туннельный микроскоп (РТМ)




Принцип работы РТМ сравнительно прост. Сканирующая металлическая игла, закрепленная в трехкоординатном приводе PX, PY, PZ, расположена перпендикулярно исследуемой поверхности (рис. 13).

Рис. 13. Принцип работы сканирующего туннельного микроскопа:

1 – игла; 2 – исследуемая поверхность; 3 – трехкоординатный пьезопривод; 4 – система обратной связи

С помощью пьезопривода игла подводится к поверхности образца до возникновения туннельного тока IT, который определяется величиной зазора s между иглой и поверхностью:

,

где Ф – величина потенциального барьера в зазоре, измеряемая в электронвольтах; U – напряжение, приложенное между иглой и образцом в вольтах; s – зазор между поверхностью и иглой в ангстремах.

При постоянном напряжении U на зазоре игла перемещается вдоль поверхности, причем с помощью системы обратной связи, воздействующей на пьезоэлемент PZ, туннельный ток IT поддерживают постоянным. Если величина барьера Ф постоянна вдоль исследуемой поверхности (материал поверхности однороден), то величина туннельного тока будет изменяться пропорционально величине зазора между иглой и поверхностью и график изменения этого тока будет описывать профиль рельефа поверхности. Набор таких профилей даст непосредственную информацию о топографии поверхности.

На рис. 14 представлены сравнительные характеристики различных сканирующих растровых микроскопов, а на рис. 15 и 16 – примеры изображений отдельных групп атомов, построенных с помощью РТМ.

Рис. 15. РТМ-изображение германиевой самосборки атомов (германиевая «пирамида» на кремнии) шириной 10 нм


Заключение

Первые выдающиеся открытия были сделаны как раз с помощью простого микроскопа. В середине XVII века блестящих успехов добился голландский естествоиспытатель Антони Ван Левенгук. В течение многих лет Левенгук совершенствовался в изготовлении крохотных (иногда меньше 1 мм в диаметре) двояковыпуклых линзочек, которые он изготавливал из маленького стеклянного шарика, в свою очередь получавшегося в результате расплавления стеклянной палочки в пламени. Затем этот стеклянный шарик подвергался шлифовке на примитивном шлифовальном станке. На протяжении своей жизни Левенгук изготовил не менее 400 подобных микроскопов. Один из них, хранящийся в университетском музее в Утрехте, дает более чем 300-кратное увеличение, что для XVII века было огромным успехом.

 

В начале XVII века появились сложные микроскопы, составленные из двух линз. Изобретатель такого сложного микроскопа точно не известен, но многие факты говорят о том, что им был голландец Корнелий Дребель, живший в Лондоне и находившийся на службе у английского короля Иакова I. В сложном микроскопе было два стекла: одно - объектив - обращенное к предмету, другое - окуляр - обращенное к глазу наблюдателя. В первых микроскопах объективом служило двояковыпуклое стекло, дававшее действительное, увеличенное, но обратное изображение. Это изображение и рассматривалось при помощи окуляра, который играл, таким образом, роль лупы, но только лупа эта служила для увеличения не самого предмета, а его изображения. В 1663 году микроскоп Дребеля был усовершенствован английским физиком Робертом Гуком, который ввел в него третью линзу, получившую название коллектива. Этот тип микроскопа приобрел большую популярность, и большинство микроскопов конца XVII - первой половины VIII века строились по его схеме.

 

 

ЛИТЕРАТУРА

 

1. Б. Хабаров, Г.Куликов, А.Парамонов. Техническая диагностика и ремонт бытовой радиоэлектронной аппаратуры. – Мн.: Издательство: Горячая Линия – Телеком, 2004. – 376 с.

2. Дэвидсон Г. Поиск неисправностей и ремонт электронной аппаратуры без схем. 2-е издание. М. Издательство: ДМК Пресс. 2005, - 544 с.




Поделиться с друзьями:


Дата добавления: 2015-03-29; Просмотров: 2397; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.