КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Пояснения к работе. Однократных измерений при наличии систематической
Погрешности Однократных измерений при наличии систематической Работа № 2. Обработка и представление результатов Какие нормативно-правовые документы регламентируют санатрно-курортную деятельность. Техническре регулирование сферы отдыха детей. Сетификация санатрно-курортных услуг. Сертификация средств размещения. Проверочная
семинар: Классификация курортов россии и характеристика уникальных курортов «Перечень курортов России с обоснованием их уникальности по природным лечебным факторам» состоит из 2 частей: 1. классификация курортов – скачать 2. уникальные курорты России – скачать
Цель работы: получение навыков определения инструментальной и методической погрешностей средств измерений напряжения, а также устранения влияния систематических погрешностей на результаты прямых однократных измерений. Задание для домашней подготовки Используя рекомендованную литературу, изучите следующие вопросы: - причины возникновения и особенности систематических погрешностей измерений, использование поправок; - инструментальные погрешности измерений, методы их нормирования и определения; - представление результатов измерений; - принцип действия, устройство и характеристики средств измерений, используемых при выполнении настоящей работы. Систематические погрешности являются детерминированными величинами и могут быть автоматически скомпенсированы в процессе обработки измерительных сигналов либо устранены при обработке результатов измерений путем введения поправок. Примеры систематических погрешностей: нелинейность характеристики преобразования, температурные погрешности, методические погрешности. Для исправления результатов измерений, содержащих систематическую погрешность, эти результаты складывают с поправками, равными систематическим погрешностям по величине и противоположными им по знаку. Поправки могут быть определены как экспериментально, так и теоретически. Поправки, определяемые экспериментально, задаются в виде таблиц или графиков, теоретически – в виде формул. Результат измерений, полученный после внесения поправки, называется исправленным результатом измерений. На практике часто приходится сталкиваться с необходимостью учета систематической погрешности, возникающей из-за несовершенства принятого метода измерений. Эта погрешность известна как методическая. Для учета влияния методических погрешностей на результаты измерений обычно применяются математические зависимости, описывающие явление, положенное в основу измерения. В такой ситуации оценки погрешностей формул и физических констант, как правило, известны. В данной лабораторной работе рассматривается методическая погрешность измерения напряжения, возникающая из-за того, что вольтметр обладает конечным внутренним сопротивлением. Рассмотрим цепь, представляющую собой делитель напряжения, образованный резисторами R 1, R 2. К входу делителя приложено напряжение питания U 0. Выходное напряжение на резисторе R 1 измеряется вольтметром V с внутренним сопротивлением R вх (рис. 2.1). Рис. 2.1. К определению методической погрешности измерения напряжения
Входное сопротивление вольтметра шунтирует резистор R 1, вследствие чего сопротивление Rab между точками а - b становится меньше. Поэтому, измеренное вольтметром значение напряжения всегда будет меньше, чем действительное значение (в данном случае методическая погрешность имеет знак «минус»). Величина напряжения на входе вольтметра:
Значение методической погрешности зависит от соотношения между входным сопротивлением вольтметра и внутренним сопротивлением источника измеряемого напряжения – в данном случае от R вх, R 1, R 2. Методическая погрешность уменьшается при R вх ≫ R 1, R 2 и стремиться к нулю при R вх → ∞. Для определения методической составляющей погрешности в лабораторной работе представим источник измеряемого напряжения в виде активного двухполюсника, к которому подключен вольтметр, имеющий входное сопротивление R ВХ (рис. 2.2). Пусть контролируемый источник имеет выходное напряжение U 0 и внутреннее сопротивление R ВН, тогда напряжение UX на зажимах вольтметра можно вычислить по формуле:
(2.1)
Отсюда значение абсолютной методической погрешности Δм равно: (2.2) Относительная методическая погрешность δм: (2.3)
Рис. 2.2. Схема для определения методической погрешности измерения постоянного напряжения
В рассматриваемом случае методическая погрешность проявляется как систематическая, поэтому она может быть исключена внесением поправки П = – Δм, прибавленной к показанию вольтметра. Даже после внесения поправки всегда остается неисключенный остаток методической погрешности, в нашем случае такой остаток может возникнуть из-за отличия истинных значений сопротивлений от тех, которые использованы при расчетах. Кроме того, в качестве составляющих неисключенной систематической погрешности могут выступать систематические погрешности средства измерений и систематические погрешности, вызванные другими источниками. При определении границ неисключенной систематической погрешности результата измерений все такие составляющие рассматриваются как случайные величины и строится их композиция. Мы не будем здесь рассматривать правила построения такой композиции и остановимся только на важном частном случае. Для электромеханических (в частности магнитоэлектрических) вольтметров входное сопротивление сравнительно невелико, поэтому методическая составляющая погрешности измерения может быть значительна. В большинстве случаев применение электронного вольтметра позволяет получить пренебрежимо малое значение методической погрешности, существенно меньшее, чем инструментальная погрешность измерения. Инструментальная погрешность – это составляющая погрешности измерения, обусловленная погрешностью применяемого средства измерений. Инструментальная погрешность измерения может быть определена исходя из класса точности применяемого средства измерений. Класс точности – обобщенная характеристика средств измерений, отражающая уровень их точности, выражаемая пределами допускаемых основной и дополнительных погрешностей, а также другими характеристиками, влияющими на точность. Класс точности может выражаться одним числом или двумя числами (в виде дроби) в зависимости от соотношения входящих в состав абсолютной погрешности составляющих. К приборам, у которых класс точности выражается одним числом, относится большинство электромеханических приборов со стрелочным указателем, в том числе и магнитоэлектрические вольтметры. Класс точности К в этом случае – это максимальное значение основной приведённой погрешности, выраженное в процентах. Отметим, что на шкале прибора знак «%» не указывается. Приведённая погрешность γ – отношение абсолютной погрешности ∆ средства измерения к его нормирующему значению U к, выраженное в процентах: (2.4) В качестве U к, как правило, используется значение верхнего предела диапазона (поддиапазона) измерения средства измерений. Таким образом, класс точности, выраженный одним числом: (2.5) где К – указанный на циферблате прибора класс точности; ∆max – предел абсолютной (инструментальной) погрешности измерения в данном диапазоне измерения. Предел относительной (инструментальной) погрешности измерения для магнитоэлектрического вольтметра: (2.6) где Ux – измеренное значение напряжения (показания прибора); U к – значение верхнего предела диапазона (поддиапазона) измерения прибора. Предел основной (инструментальной) погрешности: (2.7) К приборам, класс точности которых выражается двумя числами, относятся цифровые приборы, а также мосты и компенсаторы с ручным и с автоматическим уравновешиванием. Предел относительной (инструментальной) погрешности таких средств измерения выражается зависимостями вида: (2.8) где c и d – постоянные числа из стандартного ряда, обозначающие класс точности. В процессе выполнения настоящей работы измеряется постоянное напряжение на выходе источника питания с переменным внутренним сопротивлением. Значение измеряемого напряжения лежит в диапазоне от 10 до 30 В. Для таких измерений можно использовать электромеханические и электронные аналоговые вольтметры, цифровые вольтметры и компенсаторы (потенциометры) постоянного тока. Электромеханические вольтметры и простые цифровые вольтметры выбираются в случаях, если требования к точности измерений невысоки, а значение измеряемого напряжения лежит в диапазоне от десятков милливольт до сотен вольт. Измерения в этом случае выполняются методом непосредственной оценки. На практике удобно использовать простые и дешевые аналоговые вольтметры, например магнитоэлектрической системы. В отличие от электронных вольтметров они не требуют дополнительного источника питания и более просты в эксплуатации, а по сравнению с электромеханическими вольтметрами других систем имеют лучшие характеристики. Магнитоэлектрические вольтметры имеют линейную шкалу, характеризуются высокой точностью и чувствительностью, малым собственным потреблением энергии. Входное сопротивление магнитоэлектрических вольтметров постоянного тока лежит в диапазоне от 10 до 100 кОм, по этому показателю они уступают как электронным аналоговым, так и цифровым вольтметрам. Ток, протекающий через катушку магнитоэлектрического вольтметра, не должен превышать некоторой номинальной величины, которая называется током полного отклонения. Значение этого тока для магнитоэлектрических приборов обычно лежит в диапазоне от 1 мкА до 50 мА. Магнитоэлектрические вольтметры имеют класс точности от 0,2 до 2,5. При использовании магнитоэлектрического вольтметра погрешность измерений в нормальных условиях определяется главным образом инструментальной погрешностью вольтметра и методической погрешностью измерений. При этом предел абсолютной погрешности результата измерений Δизм можно с приемлемой точностью вычислить по формуле (2.9) где Δинс – предел основной абсолютной инструментальной погрешности, определяемый по формуле (2.7); Δм.ост – значение неисключенного остатка абсолютной методической составляющей погрешности. Предел относительной погрешности результата измерений δизм: (2.10)
Дата добавления: 2015-04-30; Просмотров: 950; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |