Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Стандарты Единой системы допусков и посадок




Единая система допусков и посадок (ЕСДП) разработана в соответствии с комплексной программой и рекомендациями международных стандартов. Она распространяется на сопрягаемые гладкие цилиндрические элементы и элементы, ограниченные параллельными плоскостями.

Все детали, из которых состоят соединения, узлы, агрегаты и машины, характеризуются геометрическими размерами. Размеры выражают числовое значение линейных величин (диаметр, длину, ширину и т.д.) и делятся на номинальные, действительные и предельные. В машиностроении размеры указывают в миллиметрах.

В соединении элементов двух деталей одна из них является внутренней (охватывающей), другая — наружной (охватываемой). В системе допусков и посадок гладких соединений всякий наружный элемент условно называется валом и обозначается строчными буквами латинского алфавита, а внутренний элемент называется отверстием и обозначается заглавными буквами латинского алфавита.

Основные термины и определения установлены ГОСТ 25346— 89. Номинальный размер — размер, который служит началом отсчета отклонений и относительно которого определяются предельные размеры. Обозначается номинальный размер отверстия — DH(D), вала — d (d) (рис. 10.2,а)

 

Рис. 10.2. Поля допусков отверстия и вала при посадке с зазором (отклонения отверстия положительные, отклонения вала отрицательные)

 

Номинальный размер является основным размером детали или их соединений (в соединении участвуют две детали — отверстие и вал). Его назначают исходя из расчетов деталей на прочность, износостойкость, жесткость и т.д. и на основании конкретных конструктивных, технологических и эксплуатационных соображений В соединении две детали имеют общий номинальный размер. Значения номинальных размеров, полученных расчетным путем, следует округлять (как правило, в большую сторону).

Действительный размер — размер, установленный измерением с допустимой погрешностью. Этот термин введен, потому что невозможно изготовить деталь с абсолютно точными требуемыми размерами и измерить их без внесения погрешности. Действительный размер обозначается для отверстия Dd, а для вала — dd.

Предельные размеры детали — два предельно допускаемых размера, между которыми должен находиться или которым может быть равен действительный размер годной детали. Границы предельных размеров, т.е диапазон рассеивания действительных размеров, определяются наименьшим предельным размером (D, flf) и наибольшим предельным размером (Dmax, dmio), (см. рис.10.2, а).


Сравнение действительного размера с предельными дает возможность судить о годности деталей.

Для упрощения чертежей введены предельные отклонения от номинального размера. Предельное отклонение размера — это алгебраическая разность между предельным и номинальным размерами.

Различают верхнее и нижнее предельное отклонение, применяя при этом краткие термины — верхнее и нижнее отклонение.

Верхнее отклонение (ES — для отверстия, es — для вала) — алгебраическая разность между наибольшим предельным и номинальным размерами:

ES =Dmax-Dн, es = dmax-dн

 

Нижнее отклонение (EI — для отверстия, ei — для вала) — алгебраическая разность между наименьшим предельным и номинальным размерами:

EL =Dmin-Dн, ei = dmin-Dн

Действительным отклонением называют алгебраическую разность между действительным и номинальным размерами. Отклонение является положительным, если предельный или действительный размер больше номинального, и отрицательным, если указанные размеры меньше номинального.

На машиностроительных чертежах номинальные и предельные линейные размеры и их отклонения проставляются в миллиметрах без указания единицы, например 58+0,013; 42-0,024; 50+0,107;
74 0,2; угловые размеры и их предельные отклонения — в градусах, минутах или секундах с указанием единицы, например 0°30΄40΄΄, 120°±20°. Отклонение, равное нулю, на чертежах не проставляют, наносят только одно отклонение — положительное на месте верхнего или отрицательное на месте нижнего предельного отклонения, например 200-0,2; 200+0,2. Предельные отклонения в таблицах допусков указывают в микрометрах.

Разность между наибольшим и наименьшим предельными размерами или абсолютное значение алгебраической разности между верхним и нижним отклонениями называется допуском на размер. Допуск обозначается буквой Т, тогда для отверстия — TD, для вала - Td: (TD = Dmax - Dmin, Td = dmax - dmin).

Допуск всегда положительная величина. Он определяет допускаемое поле рассеивания действительных размеров годных деталей в партии, т.е. заданную точность изготовления. Чем меньше допуск, тем выше требуемая точность детали, при этом стоимость изготовления увеличивается.

Для упрощения допуски можно изображать графически в виде полей допусков (рис. 10.2, б). При этом ось изделия (на рис. 10.2,б не показана) всегда располагают под схемой. Поле допуска — поле, ограниченное верхним и нижним отклонениями. Поля допуска определяются значением допуска и его положением относительно номинального размера. При графическом изображении поле допуска заключено между двумя линиями, соответствующими верхнему и нижнему отклонениям относительно нулевой линии. Нулевая линия — линия, соответствующая номинальному размеру, от которой откладывают отклонения размеров при графическом изображении допусков и посадок. Если нулевая линия расположена горизонтально, то положительные отклонения откладывают вверх от нее, а отрицательные — вниз.

Две или несколько подвижно или неподвижно соединяемых деталей называют сопрягаемыми, а поверхности соединяемых элементов называют сопрягаемыми поверхностями. Поверхности тех
элементов деталей, которые не входят в соединение с поверхностями других деталей, называются несопрягаемыми (свободными) поверхностями. Соединения подразделяются и по геометрической форме сопрягаемых поверхностей — гладкие цилиндрические, плоские и др.

В зависимости от эксплуатационных требований сборку соединений осуществляют с различными посадками.

Посадкой называют характер соединения деталей, определяемый разностью между размерами отверстия и вала.

Если размер отверстия больше размера вала, то их разность называется зазором. Зазор обозначается буквой 5, тогда S = D - d.

Если размер отверстия меньше размера вала, то их разность называется натягом. Натяг обозначается буквой N, тогда N = d - D.

Зазор может быть выражен как натяг, только со знаком минус (S = -N), а натяг — как зазор со знаком минус (N = -S).

В зависимости от взаимного расположения полей допусков отверстия и вала посадка может быть с зазором, с натягом или переходной, при которой возможно получение как зазора, так и
натяга. Схемы полей допусков для разных посадок даны на рис. 10.3.

 


Рис. 10.3. Поля допусков отверстия 1 и вала 2 (отклонения даны для диаметра 40 мм)

 

Посадка с зазором характеризуется наибольшим, наименьшими средним зазором, которые определяются по формулам:

Smax = Dmax - dmin = ES-ei, Smin = Dmin – dmax = El – es, Scp = (Smax – Smin)/2.

Посадка с зазором обеспечивает возможность относительного перемещения собранных деталей. К посадкам с зазором относятся также посадки, в которых нижнее отклонение отверстия совпадает с верхним отклонением вала, т.е. 5"тш = 0. В случае посадки с зазором поле допуска вала всегда будет располагаться ниже поля допуска отверстия (рис. 10.3, а).

Посадка с натягом характеризуется: наибольшим, наименьшим и средним натягом, которые определяются по формулам:

Nmax= dmax - Dmin= es - EI, Nmin = dmin – Dmax = ei-ES;N= (Nmax - Nmin)/2.

Посадка с натягом обеспечивает взаимную неподвижность деталей после их сборки. В случае посадки с натягом поле допуска отверстия расположено под полем допуска вала (см. рис. 10.3, б).

Переходная посадка — посадка, при которой возможно получение как зазора, так и натяга. Она характеризуется наибольшим зазором и натягом. В переходной посадке поля допусков отверстия
и вала перекрываются частично или полностью (см. рис. 10.3, в).

Из-за неточности выполнения размеров отверстия и вала зазоры и натяги в соединениях, рассчитанные из эксплуатационных требований, не могут быть выдержаны точно. Отсюда появляется понятие "допуск посадки".

Допуск посадки — разность между наибольшим и наименьшим допускаемыми зазорами (допуск зазора TS в посадках с зазором) или наибольшим и наименьшим допускаемыми натягами (допуск


натяга TN в посадках с натягом), в переходных посадках допуск посадки — сумма наибольшего натяга и наибольшего зазора, взятых по абсолютному значению:


TS = Smax - Smin; TN = Nmax - Nmin; Tn = Nmax + Smax,

или

TS = TD + Td; TN= TD+ Td; Tn =TD + Td.


Пример обозначения посадки: 40+0,03/ -0,08, где 40 — номинальный размер (в мм), общий для отверстия и вала.

Согласно ГОСТ 25346-89, ГОСТ 25347-82, ГОСТ 25348-82 в системе ИСО и ЕСДП установлены допуски и посадки для размеров менее 1 мм и до 500 мм, свыше 500 до 3150 мм, а в ЕСДП — для размеров свыше 315 до 10 000 мм. В ЕСДП поля допусков для
размеров менее 1 мм выделены отдельно.

Системой допусков и посадок называют совокупность рядов допусков и посадок, закономерно построенных на основе опыта, теоретических и экспериментальных исследований и оформленных в виде стандартов. Система предназначена для выбора минимально необходимых, но достаточных для практики вариантов допусков и посадок типовых соединений деталей машин.

Системы допусков и посадок ИСО и ЕСДП для типовых деталей машин построены по единым принципам. Посадки в системе отверстия и в системе вала показаны на рис. 10.4.


 

Рис. 10.4. Примеры расположения полей допусков для посадокв системе отверстия (а) и в системе вала (б)

Посадки в системе отверстия — посадки, в которых различные зазоры и натяги получаются соединением различных валов с основным отверстием (рис. 10.4, а), и обозначают Я. Для всех посадок в системе отверстия нижнее отклонение отверстия EI = О, т.е. нижняя граница поля допуска основного отверстия всегда совпадает с нулевой линией, верхнее отклонение ES всегда положительное и равно цифровому значению допуска, т.е. TD = ES - El = ES - 0 = ES. Поле допуска основного отверстия откладывают вверх, т.е. в материал детали.

Посадки в системе вала — посадки, в которых различные зазоры и натяги получаются соединением различных отверстий с основным валом (рис. 10.4, б), который обозначают h. Для всех
посадок в системе вала верхнее отклонение основного вала es = О, т.е. верхняя граница поля допуска вала всегда совпадает с нулевой линией, нижнее отклонение отрицательное и равно цифровому
значению допуска по модулю, т.е. допуск основного вала, так же как и все допуски, положительный (Td = es - ei = 0 -(-ei) = \ei\. Поле допуска основного вала откладывают вниз от нулевой линии, т.е. в материал детали.

Такую систему допусков называют односторонней предельной. Характер одноименных посадок (т.е. предельные зазоры и натяги) в системе отверстия и в системе вала примерно одинаков. Выбор систем
отверстия и вала для той или иной посадки определяется конструктивными, технологическими и экономическими соображениями.

Точные отверстия обрабатывают дорогостоящим режущим инструментом (зенкерами, развертками, протяжками и т.п.) и применяют для обработки отверстия только одного размера с определенным полем допуска. Валы независимо от их размера обрабатывают одним и тем же резцом или шлифовальным кругом. В системе отверстия различных по предельным размерам отверстий
меньше, чем в системе вала, а следовательно, меньше номенклатура возможного режущего инструмента, необходимого для обработки отверстий. Поэтому преимущественное распространение получила система отверстия.

Однако в некоторых случаях по конструктивным соображениям приходится применять систему вала, например когда требуется чередовать соединения нескольких отверстий одинакового номинального размера, но с различными посадками на одном валу.
При выборе системы посадок необходимо также учитывать допуски на стандартные детали и составные части изделий (например, вал для соединения с внутренним кольцом подшипника качения всегда следует изготовлять по системе отверстия, а гнездо в корпусе для установки подшипника — по системе вала).

При проведении ремонта целесообразно применять посадки, образованные таким сочетанием полей допусков отверстия и вала, когда ни одна из деталей не является основной. Такие посадки
называют внесистемными или комбинированными.

Для построения систем допусков устанавливают единицу допуска i (l), которая, отражая влияние технологических, конструктивных и метрологических факторов, выражает зависимость допуска от номинального размера, ограничиваемого допуском, и является мерой точности, а также число единиц допуска (а), зависящее от качества изготовления (квалитета) и-не зависящее от
номинального размера (в ЕСДП установлено 19 квалитетов). Квалитет — совокупность допусков, соответствующих одинаковой степени точности для всех номинальных размеров. Порядковый номер квалитета возрастает с увеличением допуска: 01; 0; 1; 2;...;17, допуск по квалитету обозначается через IT с порядковым номером, например /714.

На основании исследований точности механической обработки установлены следующие эмпирические формулы нахождения единицы допуска:

для размеров до 500 мм — i = 0,45 + 0,001 D;

для размеров свыше 50 до 10000 мм — I= 0,0041D + 2,1,

где — среднее геометрическое крайних размеров каждого интервала, мм

(); i (l) ~ единица допуска, мкм; 0,001/) учитывает погрешность измерения.

Число единиц допуска (а) постоянное для каждого квалитета (качества изготовления) и не зависит от номинального размера. Число единиц допуска при переходе от одного квалитета к другому, с 5-го по 17, изменяется приблизительно по геометрической профессии со знаменателем 1,6. Число единиц допуска для этих квалитетов соответственно равно: 7, 10, 16, 25, 40, 64, 100,
160, 250, 400, 640, 1000 и 1600. Начиная с 5-го квалитета, допуски при переходе к следующему, более грубому квалитету увеличиваются на 60%, а через каждые пять квалитетов допуск увеличивается в 10 раз. Это правило дает возможность развить систему в сторону более грубых квалитетов, например IT 18 = 10 /713 и т.д. Таким образом, допуск любого квалитета равен IT = ai.

Допуски и другие значения измерений, устанавливаемые стандартами, определены при нормальной температуре, которая во всех странах принята равной 20±2° С. Такая температура принята как близкая к температуре рабочих помещений машиностроительных и приборостроительных заводов. Градуировку и аттестацию всех линейных и угловых мер и измерительных приборов, а также точные измерения следует выполнять при нормальной температуре, отступления от нее не должны превышать допустимых значений (ГОСТ 8.050—73). Температура детали и измерительного средства в момент контроля должна быть одинаковой, что может быть достигнуто совместной выдержкой детали и измерительного средства в одинаковых условиях.

В отдельных случаях погрешность измерения, вызванную отклонением от нормальной температуры и разностью температурных коэффициентов линейного расширения материалов детали и
измерительного средства, можно компенсировать введением поправки, равной погрешности, взятой с обратным знаком. Температурную погрешность ∆l приближенно определяют по формуле

∆l = l (∆1,∆t1, - ∆2 ∆t2),

где l — измеряемый размер, мм; ∆1 и ∆2 — температурные коэффициенты линейного расширения материалов деталей и измерительного средства, °С -1; ∆t1= t1 - 20° С — разность между температурой детали и нормальной температурой; ∆t2= t2 - 20 °С — разность между температурой измерительного средства и нормальной температурой.

Если температура детали и температура средств измерения одинаковы, но не равна 20° С, также неизбежны ошибки вследствие разности температурных коэффициентов линейного расширения детали и измерительного средства.

В этом случае (т.е. при ∆t1= ∆t2= ∆t) погрешность ∆l = l∆t (α1 - α2).

Для построения рядов допусков каждый из диапазонов размеров, в свою очередь, разделен на несколько интервалов. Для нормальных размеров от 1 до 500 мм установлено 13 интервалов: до 3 мм, свыше 3
до 6, свыше 6 до 10 мм... свыше 400 до 500 мм. Для полей, образующих посадки с большими зазорами или натягами, введены дополнительные промежуточные интервалы, что уменьшает колебание зазоров и
натягов и делает посадки более определенными.

Положение поля допуска относительно нулевой линии (номинального размера) определяется основным отклонением. Для образования посадок с различными зазорами и натягами в системе ИСО и ЕСДП для размеров до 500 мм предусмотрено 27 вариантов основных отклонений валов и отверстий.

Основное отклонение — это расстояние от ближней границы поля допуска до нулевой линии (рис. 10.5) Основные отклонения отверстий обозначают прописными буквами латинского алфавита, валов — строчными,


 

 



Рис. 10.5. Основные отклонения отверстий и валов

 

Основное отклонение обозначают буквой H основной вал h. Отклонения А - Н (а - h) предназначены для образования полей допусков в посадках с зазором; отклонения Js,..., N(js,...,n) — в переходных посадках, отклонения P,...,ZC (p,...,zc) — в посадках с натягом.

Каждая буква обозначает ряд основных отклонений, значение которых зависит от номинального размера. Абсолютное значение и знак каждого основного отклонения вала (верхнего es для вала a,...,h или нижнего ei для вала j, …, zc) определяют по эмпирическим формулам. Основное отклонение вала не зависит от квалитета (даже когда формула содержит допуск IT).

Основные отклонения отверстий построены так, чтобы обеспечить посадки в системе вала, аналогичные посадки в системе отверстия. Они равны по абсолютному значению и противоположны по знаку основным отклонениям валов, обозначаемых той же буквой.

Предельные отклонения линейных размеров указывают на чертежах условными (буквенными) обозначениями полей допусков или числовыми значениями предельных отклонений, а также буквенными обозначениями полей допусков с одновременным указанием справа в скобках числовых значений предельных отклонений, после буквенного обозначения основного отклонения проставляют цифровое значение квалитета (рис. 10.6, а—в).



ж)

 


Рис. 10.6. Примеры обозначения полей допусков и посадок на чертежах

 

Посадки и предельные отклонения размеров деталей, изображенных на чертеже в собранном виде, указывают дробью: в числителе — буквенное обозначение или числовое значение предельного отклонения отверстия либо буквенное обозначение с указанием справа в скобках его числового значения, после буквенного обозначения основного отклонения проставляют цифровое значение квалитета, в знаменателе — аналогичное обозначение поля допуска вала (рис. 10.6, г, д). Иногда для обозначения посадки указывают предельные отклонения только одной из сопрягаемых деталей (рис. 10.6, е, ж).

Пример 10.1. Определить характеристики посадки 45 Н7 f7. Дать эскизы деталей сопряжения и показать на них номинальный диаметр с предельными отклонениями по ГОСТ 25346—89 и ГОСТ 25347—82; начертить схему расположения полей допусков, сопрягаемых по данной посадке деталей.

На схеме расположения полей допусков соединения:

показать номинальный диаметр сопряжения с его значениями и записать условные обозначения полей допусков, предельные отклонения в мкм;

изобразить графически предельные размеры и допуски отверстия и вала, а также основные характеристики сопряжения с их значениями, для этого рассчитать по предельным отклонениям предельные размеры и допуск отверстия и вала;

рассчитать основные характеристики сопряжения — для посадки с зазором, предельные и средние зазоры и допуск посадки.


Результаты решения представить в виде таблицы.

Решение Предельные размеры, допуск:

отверстая 45 Н7(+0025), Dmn= 54,000 мм, Z>radK= 45,000 + 0,025 = 45,025мм. TD = 45,025 - 45,000 = 0,025 мм,

вала 45 /7(-0,025 / -0,050), d = 45,000 - 0,050 = 44,950 мм,
</тах= 45,000 - 0,025 = 44,975 мм; """

Td = 44,975 - 44,950 = 0,025 мм;

£„,„ = 45,025-44,950= 0,075 мм,5т,„ = 45,000-44,975 = 0,025 мм.

S = (0,025 + 0,075) / 2 = 0,050 мм;

TS= 0,075 - 0,025 = 0,050 мм.

Проверим полученные данные TS = TD + Td = 0,025 + 0,025 = 0,050 мм.

Эскизы сопрягаемых деталей приведены на рис. 10.7, схема расположения полей допусков — рис. 10.8.


 

 

Рис. 10.7. Эскизы соединения сопрягаемых деталей

 

 


Рис. 10.8. Схема расположения полей допусков (все отклонения в мкм)


 

Результаты решения запишем в табл. 10.1.

Таблица 10 1

Пример 10.2. Определить основные характеристики посадок, приведенных в табл. 10.2 номинальные размеры) и табл. 10.3. (посадки и предельные отклонения размеров деталей).

Таблица 10.2

 

 

Пример Варианты
                   
                     
                     
                     

 

Таблица 10.3

 

 

 

10.3.3. Стандарты отклонений формы и расположения поверхностей деталей

 

Термины и определения, относящиеся к основным видам отклонений и допусков формы и расположения, установлены ГОСТ 24642—81. Под отклонением формы поверхности (или профиля) понимают отклонение формы реальной поверхности (реального профиля) от формы номинальной поверхности (номинального профиля).

В основу нормирования и количественной оценки отклонений формы и расположения поверхностей положен принцип прилегающих прямых, поверхностей и профилей.


Прилегающая прямая — прямая, соприкасающаяся с реальным профилем и расположенная вне материала детали так, чтобы отклонение наиболее удаленной от нее точки реального профиля в пределах нормируемого участка имело минимальное значение (рис. 10.9, а).

Прилегающая окружность — окружность минимального диаметра, описанная вокруг реального профиля наружной поверхности вращения (рис. 10.9, б), или максимального диаметра, вписанная в реальный профиль внутренней поверхности вращения (рис. 10.9, в).



Рис. 10.9. Прилегающие прямая (а) и окружности (б, в)

 

Прилегающая плоскость — плоскость, соприкасающаяся с реальной поверхностью и расположенная вне материала детали так, чтобы отклонение наиболее удаленной от нее точки реальной поверхности в пределах нормируемого участка имело минимальное значение.

Прилегающий цилиндр — цилиндр минимального диаметра, описанный вокруг реальной наружной поверхности, или максимального диаметра, вписанный в реальную внутреннюю поверхность.

Прилегающие поверхности и профили соответствуют условиям сопряжения деталей при посадках с нулевым зазором. При измерении прилегающими поверхностями служат рабочие поверхности контрольных плит, интерференционных стекол, лекальных и поверочных линеек, калибров, контрольных оправок и т.п. Количественно отклонение формы оценивают наибольшим расстоянием Д от точек реальной поверхности (профиля) до прилегающей поверхности (профиля) по нормали к последней. Приняты следующие обозначения:

А — отклонение формы или отклонение расположения поверхностей;

Т— допуск формы или допуск расположения;

L — длина нормируемого участка.

Точность формы цилиндрической поверхности определяется точностью контура в поперечном (перпендикулярном оси), сечении и образующих цилиндр в продольном сечении (рис. 10.10,
рис. 10.11).

 



Рис. 10.10 Отклонение формы цилиндрических поверхностей в поперечном сечении.

а – отклонение от круглости;

б — овальность;

в — огранка




г) д) е) ж)


Рис. 10.11. Отклонение от цилиндричности и профиля продольного сечения

 

Совокупность всех отклонений формы цилиндрической поверхности определяется с помощью комплексного показателя — отклонение от цилиндричности.

Отклонение от цилиндричности — наибольшее расстояние от точек реальной поверхности до прилегающего цилиндра в пределах нормируемого участка (рис. 10.11, а).


На рис. 10.11,6 показано поле допуска цилиндричности, определяемое пространством, ограниченным соосными цилиндрами 1 и 2, отстоящими один от другого на расстоянии, равном допуску цилиндричности.

Комплексным показателем отклонения контура поперечного сечения цилиндрического тела является отклонение от круглости. Отклонение от круглости — наибольшее расстояние от точек реального профиля до прилегающей окружности (см. рис. 10.10, а).

Допуск круглости — наибольшее допустимое значение отклонения от круглости. Поле допуска круглости — область на плоскости, перпендикулярной оси поверхности вращения или проходящая через центр сферы, ограниченная двумя концентрическими окружностями, отстоящими одна от другой на расстоянии, равном допуску круглости.

Частные виды отклонений от круглости — овальность и огранка. Овальность — отклонение от круглости, при котором реальный профиль представляет собой овалообразную фигуру, наибольший и наименьший диаметры которой находятся во взаимно-перпендикулярных направлениях (рис. 10.10, б). Огранка — отклонение от круглости, при котором реальный профиль представляет собой
многогранную фигуру. Огранка может быть с четным и нечетным числом граней. Огранка с нечетным числом граней характеризуется равенством размера d (рис. 10.10, в). Овальность детали возникает, например, вследствие биения шпинделя токарного или шлифовального станка, дисбаланса детали и других причин. Появление огранки вызвано изменением положения мгновенного центра вращения детали, например, при бесцентровом шлифовании.

Комплексным показателем отклонений контура продольного сечения является отклонение профиля продольного сечения (рис. 10.11.в).

Отклонение профиля продольного сечения - наибольшее расстояние от точек, образующих реальную поверхность, лежащих в плоскости, проходящей через ее ось, до соответствующей стороны прилегающего профиля в пределах нормируемого участка. Отклонение профиля продольного сечения характеризует отклонения от прямолинейности и параллельности образующих.

Частными видами отклонения профиля продольного сечения являются конусообразность, бочкообразность и седлообразность. Конусообразность — отклонение профиля продольного сечения, при котором образующие прямолинейны, но не параллельны (рис. 10.11, г). Бочкообразность — отклонение профиля продольного сечения, при котором образующие непрямолинейны и диаметры увеличиваются от краев к середине сечения (рис. 10.11, д).


Седлообразностъ — отклонение профиля продольного сечения, при котором образующие непрямолинейны и диаметры уменьшаются от краев к середине сечения (рис. 10.11, ё). Бочкообразность чаще всего возникает при обтачивании тонких длинных валов в центрах без люнетов (в средней части под влиянием сил резания возникают упругие прогибы, большие, чем по краям). Толстые короткие валы чаще получаются седлообразными из-за большого смещения вала по краям (составляющие силы резания распределяются между обоими центрами более равномерно). Бочкообразность и седлообразность могут возникнуть также вследствие погрешности направляющих станин станков и других причин. Причинами конусообразности являются износ резца, несовпадение геометрических осей шпинделя и пиноли задней бабки станка (смещение центров), отклонение от параллельности оси центров направляющим станины.

Отклонение от прямолинейности оси (или линии) в пространстве и поле допуска прямолинейности оси показаны на рис. 10.11, ж.

Отклонение от плоскостности определяют как наибольшее расстояние от точек реальной поверхности до прилегающей плоскости в пределах нормируемого участка (рис. 10.12, а).

Поле допуска плоскостности — область в пространстве, ограниченная двумя параллельными плоскостями, отстоящими одна от другой на расстоянии, равном допуску плоскостности (рис. 10.12, б).

Прилегающая плоскость

Рис, 10.12. Отклонение формы плоских поверхностей


Частными видами отклонений от плоскостности являются выпуклость (рис. 10.12, в) и вогнутость (рис. 10.12, г), которые определяют как наибольшее расстояние от точек реального профиля до прилегающей прямой. Поле допуска прямолинейности в плоскости показано на рис. 10.12, д.

В случаях, когда профиль (поверхность) задан номинальными размерами (координатами отдельных точек профиля без предельных отклонений этих размеров), отклонение формы заданного профиля есть наибольшее отклонение точек реального профиля от номинального, определяемое по нормали к номинальному профилю. Допуск формы определяют в диаметральном выражении как удвоенное наибольшее допустимое значение отклонения формы заданного профиля или в радиусном выражении как наибольшее допустимое значение отклонения формы заданного профиля. Поле допуска формы заданного профиля — область на заданной плоскости сечения поверхности, ограниченная двумя линиями, эквидистантными номинальному профилю и.отстоящими одна от другой на расстоянии, равном допуску формы заданного профиля в диаметральном выражении или удвоенному допуску формы в радиусном выражении. Линии, ограничивающие поле допуска, являются огибающими семейства окружностей, диаметр которых равен допуску формы заданного профиля в диаметральном выражении, а центры находятся на номинальном профиле.

Отклонение расположения поверхности или профиля называют отклонение реального расположения поверхности (профиля) от его номинального расположения. При оценке отклонений расположения отклонения формы рассматриваемых поверхностей и базовых элементов (обобщенный термин, под которым понимают поверхность, линию или точку) должны быть исключены из рассмотрения. При этом реальные поверхности заменяют прилегающими, а за оси, плоскости симметрии и центры реальных поверхностей принимают оси, плоскости симметрии и центры прилегающих элементов.

Отклонение от параллельности плоскостей — разность наибольшего и наименьшего расстояния между прилегающими плоскостями в пределах нормированного участка (рис. 10.13, а). Полемдопуска параллельности плоскостей называют область в пространстве, ограниченную двумя параллельными плоскостями, отстоящими одна от другой на расстоянии, равном допуску параллельности, и параллельными базе (рис. 10.13, б).

 



ж) з)

Рис. 10.13. Отклонение расположения поверхностей

Отклонение от параллельности осей (прямых) в пространстве — геометрическая сумма отклонений от параллельности проекций осей (прямых) в двух взаимно перпендикулярных плоскостях; одна из
плоскостей является общей плоскостью осей, т.е. плоскостью, проходящей через одну (базовою) ось и точку другой оси (рис. 10.13, в). Отклонение от параллельности осей (или прямых) в общей плоскости — отклонение от параллельности Д^ проекций осей (прямых) на их общую плоскость. Перекос осей (прямых) — отклонение от параллельности Л проекций осей на плоскость, перпендикулярную к общей плоскости осей и проходящую через одну из осей (базовую). Поле допуска параллельности осей в пространстве — это область в пространстве, ограниченная прямоугольным параллелепипедом, стороны сечения которого равны соответственно
допуску Тх параллельности осей (прямых) в общей плоскости и допуску Т^перекоса осей (прямых), а боковые грани параллельны базовой оси и соответственно параллельны и перпендикулярны
общей плоскости осей (рис. 10.13, г). Поле допуска можно представить также цилиндром, диаметр которого равен допуску параллельности Т, а ось параллельна базовой оси. Отклонение от
перпендикулярности плоскостей показано на рис. 10.13, д.

Отклонение от соостности относительно общей оси – это наибольшее расстояние между осью рассматриваемой поверхности вращения и общей осью двух или нескольких поверхностей вращения на длине нормированного участка (рис. 10.13, е).

Допуск соосности в диаметральном выражении равен удвоенному наибольшему допускаемому значению отклонения от соосности, а в радиусном выражении — наибольшему допускаемому
значению этого отклонения.

Поле допуска соосности — область в пространстве, ограниченная цилиндром, диаметр которого равен допуску соосности в диаметральном выражении или удвоенному допуску соосности в радиусном выражении, а ось совпадает с базовой осью (рис. 10.13, ж). Количественная оценка соосности, в диаметральном и радиусном выражении, принята по рекомендации ИСО также для симметричности и пересечения осей.

Отклонение от симметричности относительно базовой плоскости — наибольшее расстояние между плоскостью симметрии рассматриваемой поверхности и базовой плоскостью симметрии в
пределах нормируемого участка (рис. 10.13, з).

Отклонение от пересечения осей, которые номинально должны пересекаться, определяют как наименьшее расстояние между рассматриваемой и базовой осями.

Позиционное отклонение — наибольшее отклонение реального расположения элемента (его центра, оси или плоскости симметрии) от его номинального расположения в пределах нормированного участка.

Суммарное отклонение и допуски формы и расположения поверхностей отражается в радиальном биении поверхности вращения, торцевом биении (полное).

Радиальное биение поверхности вращения относительно базовой оси является результатом совместного проявления отклонения от круглости профиля рассматриваемого сечения и отклонения его центра относительно базовой оси. Оно равно разности наибольшего и наименьшего расстояний от точек реального профиля поверхности вращения до базовой оси в сечении, перпендикулярном этой оси. Если определяется разность наибольшего и наименьшего расстояний от всех точек реальной поверхности в пределах нормированного участка до базовой оси, то находят полное радиальное
биение Д = /?тах - R; оно является результатом совместного проявления отклонения от цилиндричности поверхности и отклонения от ее соосности относительно базовой оси (рис. 10.14, а).




 


 


 


Рис. 10.14. Радиальное и торцевое биения

Торцевое биение (полное) — разность наибольшего и наименьшего расстояния от точек всей торцевой поверхности до плоскости, перпендикулярной базовой оси; оно является результатом совместного проявления отклонения от плоскостности рассматриваемой поверхности и отклонения от ее перпендикулярности относительно базовой оси. Торцевое биение иногда определяют в сечении торцевой поверхности цилиндром заданного диаметра (рис. 10.14,6).

Допуски расположения или формы, устанавливаемые для валов или отверстий, могут быть зависимыми и независимыми.

Зависимым называют переменный допуск расположения или формы, минимальное значение которого указывается в чертеже или технических требованиях и которое допускается превышать
на величину, соответствующую отклонению действительного размера поверхности детали от проходного предела (наибольшего предельного размера вала или наименьшего предельного размера отверстия). Зависимые допуски расположения или формы назначают главным образом в случаях, когда необходимо обеспечить собираемость деталей, сопрягающихся одновременно по нескольким поверхностям с заданными зазорами или натягами. Зависимые допуски обычно контролируют комплексными калибрами, являющимися прототипами сопрягаемых деталей. Эти калибры всегда проходные, что гарантирует беспригоночную сборку изделий.

Независимым называют допуск расположения или формы, числовое значение которого постоянно для всей совокупности деталей, изготовляемых по данному чертежу, и не зависит от дей-


ствительных размеров рассматриваемых поверхностей. Например, когда необходимо выдержать соосность посадочных гнезд под подшипники качения, ограничить колебание межосевых расстояний в корпусах редукторов и т.п., следует контролировать собственно расположение осей поверхностей.

Вид допуска расположения и формы на чертежах обозначают знаками (ГОСТ 2.308—79), приведенными в табл. 10.4.

Таблица 10.4

Условные обозначения допусков формы и расположения поверхностей


Знак и числовое значение допуска вписывают в рамку, указывая на первом месте знак, на втором - числовое значение допуска в миллиметрах и на третьем — при необходимости буквенное
обозначение базы или поверхности, с которой связан допуск расположения или формы (рис. 10.15, а).


 

Рис. 10.15. Схемы указания допусков формы и расположения поверхностей

 

Рамку соединяют с элементом, к которому относится допуск, сплошной линией, заканчивающейся стрелкой (рис. 10.15,6). Если допуск относится к оси или плоскости симметрии, соединительная линия должна быть продолжением размерной (рис. 10.15,*?); если допуск относится к общей оси (плоскости симметрии), соединительную линию проводят к общей оси (рис. 10.15,г).

Суммарные допуски формы и расположения поверхностей, для которых не установлены отдельные графические знаки, обозначают знаками составных допусков: сначала знак допуска расположения, затем знак допуска формы (рис. 10.15).

Базу обозначают заштрихованным треугольником, который соединяют линией с рамкой допуска (рис. 10.16,й).

Чаще базу обозначают буквой и соединяют ее с треугольником (рис. 10.16, 6). Если базой является ось или плоскость симметрии, треугольник располагают в конце размерной линии соответствующего размера поверхности. В случае недостатка места стрелку размерной линии допускается заменять треугольником (рис. 10.16,0).

Если допуск расположения или формы не указан как зависимый, его считают независимым. Зависимые допуски расположения и формы обозначают условным знаком (рис. 10.17,а), который помещают: после числового значения допуска, если зависимый допуск связан с действительными размерами поверхности (рис. 10.17, б); после буквенного обозначения базы (рис. 10.17, в) или без буквенного обозначения базы в третьей части рамки (рис. 10.17, г), если допуск связан с действительными размерами базовой поверхности; после числового значения допуска и буквенного обозначения базы (рис. 10.17, д) или без буквенного указания базы (рис. 10.17, е), если зависимый допуск связан с действительными размерами рассматриваемого и базового элементов.


 


Рис. 10.16. Обозначение базы


 

 


Рис. 10.17. Зависимый допуск соосности отверстий (а) и обозначение зависимых допусков (б е)

 

Для каждого вида допусков формы и расположения поверхностей согласно ГОСТ 24643-81 установлено 16 степеней точности. Числовые значения допусков от одной степени к другой изменяются с коэффициентом возрастания 1,6. В зависимости от соотношения между допуском размера и допусками формы или расположения устанавливают следующие уровни относительной геометрической точности: А - нормальная относительная геометрическая точность (допуск формы или расположения составляет примерно 60% допуска размера); В — повышенная относительная геометрическая точность (допуски формы или расположения составляют примерно 40% допуска размера); С — высокая относительная геометрическая точность (допуски формы или расположения составляют примерно 25% допуска размера).

Допуски формы цилиндрических поверхностей, соответствующие уровням А, В, С, составляют примерно 30, 20,12% допуска размера, так как допуск формы ограничивает отклонение радиуса, а допуск размера — отклонение диаметра поверхности. Допуски формы и расположения можно ограничивать полем допуска размера. Эти допуски указывают, только когда по функциональным или технологическим причинам они должны быть меньше
допусков размера или неуказанных допусков по ГОСТ 25670—83.

Отклонение формы и расположения поверхности определяют с помощью универсальных и специальных средств измерения. При этом используют поверочные чугунные плиты и плиты из твердых каменных пород (ГОСТ 10905—86), поверочные линейки (ГОСТ 8026—92),
угольники типа (ГОСТ 3749—77), плоскопараллельные концевые меры длины (ГОСТ 9038—90), натянутые струны и оптико-механические приборы, в которых роль эталонной прямой выполняет луч света, а также кругломеры (ГОСТ 17353—89) с вращающимися наконечником или деталью.

 




Поделиться с друзьями:


Дата добавления: 2015-04-30; Просмотров: 772; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.156 сек.