Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Единица количества вещества системы СИ - моль




Седьмая основная единица системы СИ - единица количества вещества моль - занимает совершенно особое место в числе основных единиц. Причин для этого существует несколько. Первая причина - эта величина практически дублирует имеющуюся основную единицу, единицу массы. Масса, определяемая как мера инертности тела или мера сил тяготения является мерой количества вещества. Вторая причина, обусловленная первой и тесно связанная с ней, состоит в том, что до сих пор не существует реализации эталона единицы этой физической величины. Многочисленные попытки независимого воспроизведения моля приводили к тому, что накопление точно измеренного количества вещества сводилось в конце концов с выходом на другие эталоны основных физических величин. Например, попытки электролитического выделения какого-либо вещества приводили к необходимости измерения массы и силы электрического тока. Точное измерение числа атомов в кристаллах приводило к измерению линейных размеров кристалла и его массы. Во всех других аналогичных попытках независимого воспроизведения моля метрологи наталкивались на те же трудности.

Естественно возникает вопрос: а по какой причине метрологические службы самых развитых стран согласились с тем, чтобы в числе основных единиц были две различные, характеризующие одно и то же физическое понятие? Ответ на этот вопрос очевиден, если отталкиваться от основного принципа построения систем единиц физических величин - удобства практического использования. В самом деле, для описания параметров механических процессов удобнее всего пользоваться произвольной искусственной мерой массы - килограммом. Для описания химических процессов очень важно знать число элементарных частиц, атомов или молекул, принимающих участие в химических реакциях. По этой причине моль называют химической основной единицей системы СИ, подчеркивая этим тот факт, что она вводится не для описания каких-то новых явлений, а для обслуживания специфических измерений, связанных с химическим взаимодействием веществ и материалов.

Указанная специфика породила еще одно очень важное качество единицы количества вещества - моля. Оно состоит в том, что при введении химического определения единицы регламентируется не просто количество любого вещества, а количества вещества в виде атомов или молекул данного сорта. Поэтому моль можно называть единицей количества индивидуального вещества. При таком определении моль становится более универсальной единицей количества вещества, чем килограмм. В самом деле, индивидуальные вещества обладают свойствами инерции и тяготения, так что эталон моля при условии его реализации на необходимом уровне точности может использоваться как эталон массы. Обратное же невозможно, т. к. мера массы, изготовленная, например, из сплава платины и иридия, никогда не сможет быть носителем свойств, присущих, например, кремнию или углероду.

Кроме удобства использования единицы количества вещества в проведении химических реакций введение второй основной единицы количества вещества оправдано еще одним обстоятельством. Оно состоит в том, что измерения количества вещества необходимо проводить в очень широком диапазоне изменения этой величины. В макроскопических явлениях объекты измерений в виде твердых тел содержат порядка 1023 атомов. Это порядок величины числа атомов в грамм-эквиваленте вещества. В микроскопических явлениях существует даже проблема детектирования отдельных атомов. Следовательно, количество вещества необходимо измерять в диапазоне изменения более чем 20 порядков! Естественно, что ни одно устройство, ни один прибор на эталонном уровне такой возможности не обеспечит.

По этой причине очевидным становится желание метрологов иметь в качестве основных единицдве единицы количества вещества, одна из которых позволяет проводить точные измерения в области больших количеств, а вторая позволяет измерять частицы определенного вещества поштучно.

Нежелание метрологов отказаться от какой-либо основной единицы количества вещества, например от килограмма, связано с тем, что воспроизведение этой единицы изготовлением копии прототипа возможно с очень высокой точностью. Воспроизведение массы независимыми способами, такими как отбор одного литра воды или электролитическое осаждение определенной массы металла из раствора, оказывается значительно менее точным, чем изготовление копии килограмма взвешиванием.

В связи с перечисленными трудностями реализации основной единицы количества вещества в виде эталона не существует. Определение моля гласит:

Молем является количество вещества, имеющее столько структурных единиц, сколько их содержится в 12 граммах моно изотопа углерода C12.

Из определения с очевидностью следует, что точно это значение не установлено, По физическому смыслу оно равно постоянной Авогадро - числу атомов в грамм-эквиваленте углерода. Это дает возможность определять моль как величину, обратную постоянной Авогадро. Для 12 грамм углерода с массовым числом 12 количество атомов будет равно NA.

В соответствии с этим проблема создания эталона количества вещества сводится к уточнению постоянной Авогадро. Технически в настоящее время пользуются следующей процедурой:

  1. Изготавливается определенное количество (сотни грамм) сверхчистого кремния.
  2. На точных масс-спектрометрах измеряется изотопный состав этого кремния.
  3. Выращивается монокристалл сверхчистого кремния.
  4. Измеряется объем монокристалла по измерениям его массы и плотности V.
  5. На рентгеновском интерферометре измеряется размер элементарной ячейки куба в монокристалле кремния - а.
  6. Поскольку кристаллическая решетка в кремнии имеет форму куба, число структурных единиц в монокристалле оказывается равным

(2.40)

  1. По измерениям массы и эквивалентного атомного веса определяется число молей кремния в кристалле

(2.41)

где m - масса кристалла, ц. - атомный вес образца с учетом различного процентного содержания изотопов.

  1. Определяется постоянная Авогадро как число структурных единиц в одном грамм-эквиваленте кремния

(2.42)

Работы по уточнению постоянной Авогадро ведутся международными метрологическими центрами постоянно. Особенно большую активность проявляет национальная физическая лаборатория Германии РТВ в Брауншвейге. Идет постоянная борьба за чистоту исходного материала (кремния) как за счет очистки от примесей, так и за счет однородности изотопного состава. Достигнутый в настоящее время уровень содержания примесей составляет для большинства элементов не более одной частицы на миллион частиц кремния, а по некоторым примесям, мешающим кристаллообразованию, одна частица на миллиард частиц кремния.

При повторении работ по уточнению постоянной Авогадро усовершенствуются средства измерения массы кристалла, его плотности, изотопного состава, размеров кристаллической решетки. В настоящее время можно гарантировать достоверность определения постоянной Авогадро на уровне 10-6-10-7 по относительной погрешности. Тем не менее это значение много больше погрешности в изготовлении копий эталона килограмма методом взвешивания.

Кроме точности, уступающей точности воспроизведения килограмма, описанная процедура определения моля страдает еще рядом существенных недостатков. Самый главный из них - это невозможность создания меры, равной какой-либо части моля или нескольких молей, т. е. создания мер кратных и дольных единиц. Любые попытки сделать это приводят к необходимости взвешивания, т. е. определения массы и выхода на эталон килограмма. Естественно, что смысл воспроизведения моля при этом теряется. Еще один принципиальный порок в процедуре использования моля это то, что проведенные измерения числа частиц на кремнии очень трудно, а иногда невозможно сопоставить с какими-либо другими частицами, и в первую очередь с углеродом, по которому собственно и определяется моль. В общем случае любая сверхточная процедура определения числа частиц какого-либо вещества может оказаться совершенно непригодной для другого вещества. Массу любых веществ мы можем сравнивать друг с другом, но число частиц одного вещества может оказаться несопоставимым с числом частиц другого вещества. В идеальном случае для обеспечения единства измерений состава веществ и материалов следует иметь универсальный метод воспроизведения моля любого вещества, но чаще всего такая задача оказывается невыполнимой. Очень большое число веществ в химические взаимодействия друг с другом не вступают.

Несмотря на все указанные проблемы в реализации эталона моля «химическая метрология» существует, и химикам очень удобно использовать единицу количества вещества, определенную как число частиц данного сорта. Именно поэтому моль широко используется в измерениях состава веществ и материалов и в особенности в измерениях экологической направленности. В настоящее время проблемы экологии как межнациональные и межгосударственные являются одной из основных точек приложения достижений метрологии как науки об обеспечении единства измерений.




Поделиться с друзьями:


Дата добавления: 2015-04-30; Просмотров: 1849; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.