КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Ультраструктура поперечнополосатых мышц
Кость Кость несет опорные, метаболические и защитные функции. Кость - это соединительная ткань, состоящая из клеток, погруженных в твердое основное вещество. Примерно 30% основного вещества образовано органическими соединениями, преимущественно в форме коллагеновых волокон, а остальные 70%-неорганическими. Главный неорганический компонент кости представлен гидроксиапатитом Са10(РО4)6(ОН)2, но в ней содержатся также в различных количествах натрий, магний, калий, хлор, фтор, карбонаты и цитраты.
(к оглавлению) Строение костей специально приспособлено к тому, чтобы выдерживать деформацию сжатия и сопротивляться растягивающим нагрузкам. При откладывании волокон кости они импрегнируются кристаллами апатита. Это придает кости максимальную прочность. Поступление кальция и фосфата в кровь по мере необходимости регулируется двумя гормонами - парагормоном и кальцитонином. компактная, или плотная, кость (рис. 8.28). На поперечном срезе компактной кости можно видеть, что она состоит из многочисленных цилиндров, образованных концентрическими костными пластинками; в центре каждого такого цилиндра имеется гаверсов канал, вместе с которым он составляет гаверсову систему, или остеон. Между костными пластинками имеются многочисленные лакуны, содержащие живые костные клетки-остеобласты. Каждая такая клетка способна откладывать кость. В ее цитоплазме имеются хорошо выраженный гранулярный (шероховатый) эндоплазматический ретикулум и аппарат Гольджи; кроме того, в ней содержится много РНК. Когда остеобласты переходят в неактивное состояние, их называют остеоцитами. Количество клеточных органелл в остеоцитах понижено, и они нередко запасают гликоген. Если возникает необходимость в структурных изменениях костей, остеоциты активизируются и быстро дифференцируются, превращаясь в остеобласты. От каждой лакуны отходит наподобие лучей много тонких канальцев, содержащих цитоплазму, которые могут соединяться с центральным гаверсовым каналом, с другими лакунами или тянуться от одной костной пластинки к другой. Через каждый гаверсов канал проходят одна артерия и одна вена, которые разветвляются на капилляры и подходят по канальцам к лакунам данной гаверсовой системы. Они обеспечивают поступление и отток из клеток питательных веществ, отходов метаболизма, С02 и 02. Каждый гаверсов канал содержит также лимфатический сосуд и нервные волокна, плотно обвернутые ареолярной тканью. Поперечные гаверсовы каналы сообщаются с костномозговой полостью, а также соединяются с продольными гаверсовыми каналами; последние содержат более крупные кровеносные сосуды и не окружены концентрическими костными пластинками. На наружной и внутренней поверхностях кости костные пластинки не образуют концентрические цилиндры, а располагаются вокруг них. Эти области пронизаны каналами Фолькмана, через которые проходят кровеносные сосуды, соединяющиеся с сосудами, проходящими по гаверсовым каналам. Основное вещество компактной кости состоит из костного коллагена, вырабатываемого остеобластами, и гидроксиапатита; кроме того, в него входят магний, натрий, карбонаты и нитраты. Такое сочетание органических и неорганических материалов создает очень прочную структуру. Костные пластинки располагаются таким образом, чтобы кость могла выдерживать действующие на нее силы и тот груз, который ей приходится нести. Снаружи кость покрыта слоем плотной соединительной ткани - надкостницей. Пучки коллагеновых волокон, называемых волокнами Шарпея - Шафера и идущих из надкостницы, врастают в кость, прочно связывая ее с надкостницей, и создают надежную основу для прикрепления сухожилий. Внутренняя область надкостницы богата сосудами и образует слой, содержащий недифференцированные остеобласты. губчатая, или трабекулярная, кость (рис. 8.29). Губчатая кость представляет собой сеть из тонких анастомозирующих костных элементов, называемых трабекулами. В ее основном веществе содержится меньше неорганического материала (60-65%), чем в основном веществе компактной кости. Органическое вещество состоит главным образом из коллагеновых волокон. Пространства между трабекулами заполнены мягким костным мозгом. В красном костном мозге, содержащемся в эпифизах длинных трубчатых костей, таких, как бедренная кость, клеточные элементы представлены главным образом эритроцитами, а в желтом костном мозге, содержащемся в диафизах этих костей, - в основном жировыми клетками. В губчатой кости имеются клетки трех разных типов, которые, возможно, являются тремя различными функциональными стадиями однотипных клеток. Это остеобласты, синтезирующие губчатую кость, остеоциты, представляющие собой покоящиеся остеобласты, и остеокласты, способные резорбировать кальцинированное основное вещество. Трабекулы ориентированы в направлении, в котором на кости воздействует нагрузка. Это придает кости устойчивость к напряжению и сжатию при минимальной массе. Губчатая кость характерна для зародышей и растущих организмов, а во взрослом организме присутствует в эпифизах длинных костей.
мембранные кости (рис. 8.30). Такие кости не имеют хрящевых зачатков, а образуются непосредственно в дермальном слое кожи в результате интрамембранной оссификации. В месте образования кости появляются скопления остеобластов, выстраивающихся в ряды и вырабатывающих костные трабекулы. Таким путем возникают плоские кости, лежащие очень близко к поверхности тела. Они увеличиваются в размерах в результате дальнейшего отложения кости на их внутренних и внешних поверхностях, после чего могут погружаться глубже в тело, входя в состав скелета. Мембранные кости имеются в черепе, нижней челюсти и плечевом поясе.
(к оглавлению) Дентин По своему составу дентин очень сходен с костью. Однако он содержит больше неорганического вещества (75%) и поэтому тверже. В дентине нет ни лакун, ни гаверсовых систем, а местоположение остеобластов (одонтобластов) совершенно иное, чем в кости (рис. 8.31): они расположены на внутренней стороне дентина и от них отходят многочисленные отростки, пронизывающие основное вещество; эти отростки содержат микротрубочки, а нередко также кровеносные сосуды и нервные окончания, чувствительные к прикосновению и к холоду. Отростки одонтобластов вырабатывают коллагеновые волокна, откладывающиеся в их апикальных участках; в конечном счете, эти волокна импрегнируются кристаллами апатита, кальцинируются и образуют новый дентин. Дентин расположен между эмалью и пульпарной полостью зуба, над десной и под ней.
Гематопоэтические ткани Известны два типа гематопоэтической ткани - миелоидная и лимфоидная. В миелоидной ткани, или костном мозге, образуются эритроциты и гранулоциты, а в лимфоидной - лимфоциты и моноциты. Гематопоэтические ткани состоят из свободных клеток, лежащих в строме, образованной рыхлыми ретикулиновыми волокнами, которые нередко называют ретикулярной соединительной тканью.
Миелоидная ткань (костный мозг): строма образована очень рыхлой ретикулярной соединительной тканью, в которой имеются обширные межклеточные пространства. Строму пересекают многочисленные обширные тонкостенные кровеносные синусоиды, через которые зрелые кровяные клетки попадают в кровоток. Синусоиды выстланы фагоцитарными клетками, составляющими часть ретикулоэндотелиальной системы организма. Полагают, что все форменные элементы крови происходят из родоначальных клеток, называемых гемоцитобластами, которые дифференцируются в эритробласты - предшественники эритроцитов, миелоциты - предшественники гранулоцитов, лимфобласты предшественники лимфоцитов, монобласты - предшественники моноцитов и мегакариоциты, из которых образуются тромбоциты (кровяные пластинки). Лимфоидная ткань: эта ткань ответственна за дифференцировку лимфоцитов. Известны три типа лимфоидной ткани: рыхлая лимфоидная ткань, в которой строма, образуемая ретикулярной соединительной тканью, преобладает над свободными клетками; плотная лимфоидная ткань, содержащая гораздо больше свободных клеток, погруженных в строму; узелковая лимфоидная ткань, содержащая плотные скопления свободных клеток. Свободные клетки - это главным образом лимфоциты, различающиеся по размерам и функциям. Среди них встречаются также плазматические клетки, дифференцировавшиеся из лимфоцитов, а иногда моноциты и эозинофилы. Некоторые из этих клеток являются фагоцитами.
(к оглавлению)
Нервная ткань. Нервная ткань состоит из нервных клеток — нейронов (10%) и вспомогательных нейроглиальных клеток (90%), или клеток-спутниц. Нейрон — элементарная структурно-функциональная единица нервной ткани. Основные функции нейрона: генерация, проведение и передача нервного импульса, который является носителем информации в нервной системе. Нейрон состоит из тела и отростков, причем эти отростки дифференцированы по строению и функции (рис. 1).
Рис. 1. Схема внешнего и внутреннего строения нейрона: 1 — дендриты и их отростки; 2 — комплекс Гольджи; 3 — микротрубочки; 4 — аксон; 5 — коллатерали аксона; 6 — ядро; 7 — гранулярная эндоплазматическая сеть; 8 — митохондрии
Длина отростков у различных нейронов колеблется от нескольких микрометров до 1—1,5 м. Длинный отросток (нервное волокно) у большинства нейронов имеет миелиновую оболочку, состоящую из особого жироподобного вещества — миелина. Она образуется одним из типов нейроглиальных клеток — олигодендроцитами. По наличию или отсутствию миелиновой оболочки все волокна делятся соответственно на мякотные (миелинизированные) и безмякотные (немиелинизированные). Последние погружены в тело специальной нейроглиальной клетки — нейролеммоцита (рис. 2).
Рис. 2. Оболочки нервных волокон: а — миелиновая; б — ее образование (процесс наслоения показан стрелкой); в— оболочка безмякотного волокна; 1 — аксон; 2— ядро глиальной клетки; 3 — слои оболочки; 4 — перехват Ранвье; 5 — волокно погружено в тело нейролеммоцита
Миелиновая оболочка имеет белый цвет, что позволило разделить вещество нервной системы на серое и белое. Тела нейронов и их короткие отростки образуют серое вещество мозга, а волокна — белое вещество. Миелиновая оболочка способствует изоляции нервного волокна. Нервный импульс проводится по такому волокну быстрее, чем по лишенному миелина. Миелин покрывает не все волокно: примерно на расстоянии в 1 мм в нем имеются промежутки — перехваты Ранвье, участвующие в быстром проведении нервного импульса. Функциональное различие отростков нейронов связано с проведением нервного импульса. Отросток, по которому импульс идет от тела нейрона, всегда один и называется аксоном. Аксон практически не меняет диаметр на всем своем протяжении. У большинства нервных клеток это длинный отросток. Исключением являются нейроны чувствительных спинномозговых и черепных ганглиев, у которых аксон короче дендрита. Аксон на конце может ветвиться. В некоторых местах (у миелинизированных аксонов — в перехватах Ранвье) от аксонов могут перпендикулярно отходить тонкие ответвления — коллатерали. Отросток нейрона, по которому импульс идет к телу клетки, — дендрит. Нейрон может иметь один или несколько дендритов. Дендриты отходят от тела клетки постепенно и ветвятся под острым углом. Скопления нервных волокон в ЦНС называются трактами, или путями. Они осуществляют проводящую функцию в различных отделах головного и спинного мозга и образуют там белое вещество. В периферической нервной системе отдельные нервные волокна собираются в пучки, окруженные соединительной тканью, в которой проходят также кровеносные и лимфатические сосуды. Такие пучки образуют нервы — скопления длинных отростков нейронов, покрытых общей оболочкой. Если информация по нерву идет от периферических чувствительных образований — рецепторов — в головной или спинной мозг, то такие нервы называются чувствительными, центростремительными или афферентными. Чувствительные нервы — нервы, состоящие из дендритов чувствительных нейронов, передающие возбуждение от органов чувств к ЦНС. Если информация по нерву идет из ЦНС к исполнительным органам (мышцам или железам), нерв называется центробежным* двигательным или эфферентным. Двигательные нервы — нервы, образованные аксонами двигательных нейронов, проводящие нервные импульсы от центра к рабочим органам (мышцам или железам). В смешанных нервах проходят как чувствительные, так и двигательные волокна. В том случае, когда нервные волокна подходят к какому-либо органу, обеспечивая его связь с ЦНС, принято говорить об иннервации данного органа волокном или нервом. Тела нейронов с короткими отростками по-разному расположены относительно друг друга. Иногда они образуют достаточно плотные скопления, которые называются нервными ганглиями, или узлами (если они находятся за пределами ЦНС, т. е. в периферической нервной системе), и ядрами (если они находятся в ЦНС). Нейроны могут образовывать кору — в этом случае они расположены слоями, причем в каждом слое находятся нейроны, сходные по форме и выполняющие определенную функцию (кора мозжечка, кора больших полушарий). Кроме того, в некоторых участках нервной системы (ретикулярная формация) нейроны расположены диффузно, не образуя плотных скоплений и представляя собой сетчатую структуру, пронизанную волокнами белого вещества. Передача сигнала от клетки к клетке осуществляется в особых образованиях — синапсах. Это специализированная структура, обеспечивающая передачу нервного импульса с нервного волокна на какую-либо клетку (нервную, мышечную). Передача осуществляется с помощью особых веществ — медиаторов. Нейроны разнообразны по форме, числу отростков, величине. Тела самых крупных нейронов достигают в диаметре 100—120 мкм (гигантские пирамиды Беца в коре больших полушарий), самые мелкие — 4—5 мкм (зернистые клетки коры мозжечка). По количеству отростков нейроны делятся на мультиполярные, биполярные, униполярные и псевдоуниполярные. Мультиполярные нейроны имеют один аксон и много дендритов, это большинство нейронов нервной системы. Биполярные имеют один аксон и один дендрит, униполярные — только аксон; они характерны для анализаторных систем. Из тела псевдоуниполярного нейрона выходит один отросток, который сразу после выхода делится на два, один из которых выполняет функцию дендрита, а другой аксона. Такие нейроны находятся в чувствительных ганглиях (рис. 3). (к оглавлению) Рис. 3. Типы нейронов: а — псевдоуниполярный нейрон; б — биполярный нейрон; в — мотонейрон спинного мозга; г — пирамидный нейрон коры больших полушарий; д — клетка Пуркинье мозжечка; 2 — дендрит; 2 — тело нейрона; 3 — аксон; 4 — коллатераль аксона
Функционально нейроны подразделяются на чувствительные, вставочные (релейные и интернейроны) и двигательные. Чувствительные нейроны — нервные клетки, воспринимающие раздражения из внешней или внутренней среды организма. Двигательные нейроны — моторные нейроны, иннервирующие мышечные волокна. Кроме того, некоторые нейроны иннервируют железы. Такие нейроны вместе с двигательными называют исполнительными. Часть вставочных нейронов (релейные, или переключательные, клетки) обеспечивает связь между чувствительными и двигательными нейронами. Релейные клетки, как правило, весьма крупные, с длинным аксоном (тип Гольджи I). Другая часть вставочных нейронов имеет небольшой размер и относительно короткие аксоны (интернейроны, или тип Гольджи II). Их функция связана с управлением состояния релейных клеток. Все перечисленные нейроны формируют совокупности — нервные цепи и сети, проводящие, обрабатывающие и запоминающие информацию (рис. 4).
Рис. 4. Схема нейросети: 1 — чувствительный нейрон; 2 — релейный нейрон; 3 — двигательный нейрон; 4 — интернейроны типа Гольджи II; 5 — рецепторное окончание чувствительного нейрона в коже; 6 — эффекторное окончание двигательного (исполнительного) нейрона на мышце; → — направление проведения нервного сигнала
На концах отростков нейронов расположены нервные окончания (концевой аппарат нервного волокна). Соответственно функциональному разделению нейронов различают рецепторные, эффекторные и межнейронные окончания. Рецепторными называются окончания дендритов чувствительных нейронов, воспринимающие раздражение; эффекторными — окончания аксонов исполнительных нейронов, образующие синапсы на мышечном волокне или на железистой клетке; межнейронными — окончания аксонов вставочных и чувствительных нейронов, образующие синапсы на других нейронах. Общее направление эволюции ЦНС — увеличение числа вставочных нейронов. Из более чем ста миллиардов нейронов человека не менее 70% составляют именно вставочные нервные клетки. Одной из особенностей нейронов является то, что после развития в эмбриональном периоде из клеток-предшественниц — нейробластов — нейроны существуют не делясь, т. е. постоянно находятся в интерфазе. Это биологически оправдано, так как в течение всей жизни организма между нейронами постоянно образуются новые связи. Они утрачивались бы в случае деления нейрона, и, следовательно, терялся бы индивидуальный опыт особи, «записанный» на синапсах. Необходимо также подчеркнуть высокую скорость обменных процессов в нервной ткани. Показателем этого в первую очередь является потребление кислорода. Установлено, что головной мозг человека, вес которого составляет 2—2,5% от веса тела, потребляет до 20% поступающего в организм кислорода.
Как уже отмечалось, в нервную ткань, кроме нейронов, входят и клетки — спутницы нейронов — нейроглия (рис. 5). Рис. 5. Виды нейроглии: а — астроциты; б — олигодендроциты; в — клетки микроглии среди более крупных нейронов.
Клетки нейроглии (астроциты, олигодендроциты, микроглия) заполняют все пространство между нейронами, защищая их от механических повреждений (опорная функция). Их примерно в 10 раз больше, чем нейронов, и, в отличие от них, глиальные клетки сохраняют способность к делению в течение всей жизни. Кроме того, они образуют миелиновые оболочки вокруг нервных волокон. В ходе этого процесса олигодендроцит (в ЦНС) или его разновидность — шванновская клетка (в периферической нервной системе) обхватывает участок нервного волокна. Затем она образует вырост в виде язычка, который закручивается вокруг волокна, формируя слои миелина (цитоплазма при этом выдавливается). Таким образом, слои миелина представляют собой, по сути, плотно спрессованную цитоплазматическую мембрану. Нейроглия выполняет также защитную функцию. Она заключается, во-первых, в том, что глиальные клетки (в основном астроциты) вместе с эпителиальными клетками капилляров образуют барьер между кровью и нейронами, не пропуская к последним нежелательные (вредные) вещества. Такой барьер называют гематоэнцефалическим. Во-вторых, клетки микроглии выполняют в нервной системе функцию фагоцитов. Осуществляя трофическую функцию, нейроглия снабжает нейроны питательными веществами, управляет водно-солевым обменом и т. п.
(к оглавлению) Мышечная ткань Мышечная ткань составляет до 40% массы тела млекопитающего. Она образуется из мезодермы зародыша и состоит из высокоспециализированных сократительных клеток или волокон, соединенных между собой соединительной тканью. В организме имеется три типа мышц, различающихся по характеру иннервации: произвольные (поперечно-полосатые), непроизвольные (гладкие) и сердечная мышца.
Поперечнополосатая мышечная ткань Внешний вид продольного среза мышцы (или выделенных из нее отдельных мышечных волокон) объясняет, почему ее называют поперечнополосатой. Однако причины такой характерной исчерченности становятся понятными только при электронномикроскопическом анализе. Поперечнополосатая мышца состоит из множества вытянутых клеток, называемых из-за своей формы мышечными волокнами. Длина их достигает нескольких сантиметров при диаметре 0,01—0,1 мм (диаметр обычной клетки около 0,02 мм). Волокна имеют цилиндрическую форму и расположены параллельно друг другу. Каждое волокно многоядерное — этим оно отличается от мышечных клеток другого типа. Ядра в волокне расположены около его поверхности. Пучки мышечных волокон окружены коллагеновыми волокнами и соединительной тканью; между волокнами тоже находится коллаген. Каждое волокно окружено мембраной — сарколеммой, которая по своему строению очень напоминает обычную плазматическую мембрану. В световом микроскопе внутри мышечного волокна можно различить множество тонких миофибрилл (от греч. myos-- мышца и fibrilla — волоконце), которые и создают характерную поперечную исчерченность. Понять механизм сокращения мышцы помогает исследование ее ультраструктуры в электронном микроскопе, который позполяет детально рассмотреть миофибриллы: их диаметр близок к 1 мкм (у волокна в 100 раз больше). Их пересекают темные полосы, которые и определяют исчерченность мышечного волокна. Более детальное изучение показывает, что миофибрилла образована параллельно проходящими нитями двух типов — тонкими и толстыми миофиламентами. Они состоят из разных белков: первые — из актина, вторые — из миозина. Местами тонкие миофиламенты заходят в промежутки между толстыми, как частично переплетенные пальцы двух ладоней. Эти участки перекрывания и соответствуют темным полосам, что тоже легко продемонстрировать на пальцах. Темные полосы принято называть зонами, или дисками А. а светлые между ними — зонами, или дисками I. В последних присутствуют только актиновые миофиламенты. В зоне А можно различить среднюю зону, где нет перекрывания, т. е. проходят лишь миозиновые нити. Ее называют зоной Н. Наконец, зона Н разделяется пополам линией М. а зона I —линией Z. Как выяснилось, функциональной единицей мышцы является способный сокращаться отрезок миофибриллы между линиями Z, названный саркомером. Миофибрилла, а, cледовательно и мышечное волокно в целом, состоит из тысяч саркомеров. Механизм мышечного сокращения; теория скользящих нитей Когда была выявлена ультраструктура миофибрилл, две независимые группы исследователей (X. Хаксли/Дж. Хансон и А. Хаксли/Р. Нидергерке) предложили гипотезу мышечного сокращения, основанную на скольжении относитель но друг друга актиновых и миозиновых нитей. Ее легко понять, вдвигая пальцы одной руки между пальцами другой: если считать обе ладони эквивалентом одного саркомера, (к оглавлению) Миозиновые (толстые) миофиламенты Молекула миозина состоит из двух частей: длинного палочкообразного участка («хвоста») и присоединенного к одному из его концов глобулярного участка, который представлен двумя одинаковыми «головками» Молекулы миозина расположены на миозиновой нити таким образом, что головки регулярно распределяются по всей ее длине. В тех местах, где нити актина и миозина перекрываются, миозиновые головки могут прикрепляться к соседним актиновым нитям. Насколько важно такое взаимодействие, мы оценим при рассмотрении собственно механизма сокращения саркомера. Актиновые (тонкие) миофиламенты Каждый актиновый миофиламепт образован двумя цепочками из глобулярных молекул актина (G-актина), закрученными одна вокруг другую наподобие спирали Весь комплекс актиновых молекул называется F-актином (фибриллярным актином). Полагают, что с каждой молекулой G-актина связана одна молекула АТФ.
Дата добавления: 2015-04-30; Просмотров: 845; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |