Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Глиальные клетки общаются с нейронами




Обзор: ГЛИЯ

· Долгие десятилетия учёные полагали, что единственные клетки в головном мозге и других отделах нервной системы, способные к обмену сигналами, — это нейроны. Клеткам глии отводилась скромная роль вспомогательных элементов нервной ткани.

· Современные исследования показывают, что клетки глии обмениваются и с нейронами, и между собой посланиями о нейронной активности. Они способны изменять нейронные сигналы на уровне синаптических контактов между нейронами и влиять на образование синапсов.

· Таким образом, глия может играть решающую роль в процессах обучения и памяти, а также участвовать в восстановлении повреждённых нервов.

Любопытное совпадение? Возможно. Но сегодня учёные получают всё больше данных, указывающих на то, что глиальные клетки играют гораздо более важную роль в деятельности мозга, чем предполагалось ранее. Долгие десятилетия всё внимание физиологов было сосредоточено на нейронах — главных, по их мнению, приёмопередатчиках мозга. Хотя глиальных клеток в 9 раз больше, чем нейронов, учёные отводили им скромную роль элементов, поддерживающих жизнедеятельность мозга (транспорт питательных веществ из кровеносных сосудов в нейроны, поддержание нормального баланса ионов в мозге, обезвреживание болезнетворных микробов, ускользнувших от преследования иммунной системы, и т. д.). А тем временем нейроны, поддерживаемые глией, были вольны общаться друг с другом через крошечные контактные точки (синапсы) и формировать сложнейшие сети соединений, благодаря которым мы думаем, вспоминаем прошлое или испытываем радость.

Неизвестно, как долго просуществовала бы ещё такая модель устройства мозга, если бы не недавно обнаруженные факты, свидетельствующие о том, что на протяжении всей жизни человека (от периода эмбрионального развития и до глубокой старости) нейроны и глия ведут весьма оживлённый диалог. Глия влияет на образование синапсов и помогает мозгу определять, какие нервные связи усиливаются или ослабевают с течением времени (эти изменения напрямую связаны с процессами общения и долгосрочной памяти). Последние исследования показали, что глиальные клетки общаются и друг с другом, влияя на деятельность мозга в целом. Нейробиологи с большой осторожностью наделяют глию новыми полномочиями. Однако можно вообразить, какое волнение они испытывают при мысли о том, что большая часть нашего мозга почти не изучена и, следовательно, может ещё раскрыть множество тайн.

Мы представляем себе нервную систему в виде переплетения проводов, соединяющих нейроны. Каждый нейрон снабжён одним длинным отростком — аксоном, переносящим электрические сигналы от тела нейрона к расширенным участкам на его конце — аксонным терминалям. Каждая терминаль высвобождает в синаптическую щель молекулы химического посредника — нейротрансмиттера, которые достигают соответствующих рецепторов на коротких ветвящихся отростках (дендритах) соседнего нейрона. Пространства между нейронами и аксонами заполнены массой разнообразных клеток глии. К тому времени, как скончался Эйнштейн, нейробиологи уже подозревали, что глиальные клетки принимают участие в переработке информации, но доказательств у них не было. В конце концов они оставили глию в покое.

Причина того, что учёные не смогли обнаружить обмен сигналами между глиальными клетками, отчасти была связана с несовершенством методик. Но главными виновниками неудач были сами исследователи, ошибочно считавшие, что если клетки глии наделены способностью к общению, то обмениваться информацией они должны точно так же, как и нейроны, — с помощью электрических сигналов. Предполагалось, что клетки глии тоже должны генерировать электрические импульсы (потенциалы действия), стимулирующие выброс в синаптическую щель нейротрансмиттеров, которые, в свою очередь, вызывают импульсы в других клетках. Исследователи обнаружили, что глиальные клетки обладают несколькими типами ионных каналов, ответственных за генерирование электрических сигналов в аксонах, но они предположили, что эти каналы нужны глии просто для того, чтобы чувствовать уровень активности соседних нейронов. Было установлено, что мембрана глиальных клеток не обладает свойствами, необходимыми для проведения потенциалов действия. Нейробиологи, однако, упустили из виду одно обстоятельство, которое удалось обнаружить только благодаря современным методам исследования: глиальные клетки передают друг другу сообщения с помощью химических, а не электрических сигналов.

  Глия и нейроны работают в головном и спинном мозге согласованно. Нейрон посылает по аксону сигнал, который через синаптическую щель достигает дендрита другой нервной клетки. Астроциты поставляют нейронам питательные вещества, а также окружают синапсы и регулируют их деятельность. Олигодендроциты вырабатывают миелин и образуют вокруг аксонов изолирующие миелиновые оболочки…

Важный вклад в понимание механизмов, позволяющих глии распознавать нейронную активность, был сделан в середине 1990-х гг., когда учёные обнаружили в мембранах глиальных клеток рецепторы, реагирующие на разнообразные химические вещества, включая и нейротрансмиттеры. Это открытие навело их на мысль, что клетки глии способны общаться друг с другом с помощью сигналов, которые не распознаются нервными клетками.

Экспериментально было установлено, что показателем активации глиальных клеток служит поглощение ими кальция. На основании этого наблюдения учёные разработали метод, позволяющий визуально определять, обладают ли терминальные шванновские клетки (один из типов глиальных клеток, окружающих синапсы в области контакта нервов с мышечными клетками) чувствительностью к нервным сигналам, приходящим к этим синапсам. Было показано, что шванновские клетки действительно реагируют на синаптические импульсы и что такая реакция сопровождается проникновением в них ионов кальция.

Но ограничивается ли участие глии в нервных процессах только „подслушиванием“ нейронных переговоров? Ведь шванновские клетки окружают аксоны как в области синапсов, так и по ходу нервов в разных частях тела, а глиальные клетки другого типа (олигодендроциты) образуют оболочки вокруг аксонов в центральной нервной системе (т. е. в головном и спинном мозге). Сотрудники лаборатории Национального института здравоохранения решили выяснить, способна ли глия отслеживать и нервные сигналы, распространяющиеся по аксонам в нервных цепях. И если такое общение между глией и нейронами существует, какие механизмы лежат в его основе и, что ещё важнее, как влияют на работу глиальных клеток „подслушанные“ ими нервные сообщения?

Астроциты регулируют синаптическую передачу сигнала несколькими способами. Аксон передаёт нервный сигнал дендриту за счёт выброса нейротрансмиттера (обозначен зелёным цветом) — в данном случае глутамата. Кроме того, аксон высвобождает АТФ (жёлтый). Эти соединения вызывают перемещение кальция (фиолетовый) внутрь астроцитов, что побуждает их вступить в общение друг с другом за счёт высвобождения собственного АТФ…

Чтобы ответить на эти вопросы, мы культивировали сенсорные нейроны (клетки дорсально-корешкового ганглия, ДКГ) мыши в специальных лабораторных чашках с электродами, с помощью которых можно было вызывать потенциалы действия в аксонах. В одни чашки с нейронами мы добавили шванновские клетки, в другие — олигодендроциты. Необходимо было одновременно контролировать активность и аксонов, и глии. За активностью нервных и глиальных клеток мы следили визуально, вводя в них краситель, который при связывании с ионами кальция должен был флуоресцировать. Когда по аксону пробегает нервный импульс, потенциалозависимые ионные каналы в нейронной мембране открываются, и ионы кальция проникают в клетку. Следовательно, распространение импульсов по аксонам должно сопровождаться зелёными вспышками внутри нейронов. По мере роста концентрации кальция в клетке флуоресценция должна становиться ярче. Её интенсивность можно измерить с помощью фотоэлектронного умножителя, а искусственно окрашенные изображения светящейся клетки воспроизвести в реальном времени на экране монитора. Если глиальные клетки реагируют на нервные сигналы и поглощают в это время ионы кальция из окружающей среды, они тоже должны засветиться — только немного позднее, чем нейроны.

Сидя в затенённой комнате и напряжённо вглядываясь в экран монитора, мы с биологом Бетом Стивенсом (Beth Stevens) собирались приступить к эксперименту, на подготовку которого у нас ушло несколько месяцев. На включение стимулятора нейроны ДКГ тут же отреагировали изменением цвета: по мере увеличения концентрации кальция в их аксонах они превратились из синих в зелёные, затем — в красные и, наконец, побелели. Поначалу ни в шванновских клетках, ни в олигодендроцитах никаких изменений не обнаружилось, но спустя 15 долгих секунд они, подобно ёлочным лампочкам, начали загораться. Каким-то неведомым образом клетки глии почувствовали, что по аксонам пробегают импульсы, и отреагировали на это событие увеличением концентрации кальция в цитоплазме.




Поделиться с друзьями:


Дата добавления: 2015-04-30; Просмотров: 1289; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.