КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Теоретическая часть 4 страница
21. По графику при находим . 22. Так как по условиям задания все элементы работают в периоде нормальной эксплуатации и подчиняются экспоненциальному закону (7.10), то для элементов 12 - 15 при находим ч . (7.12) 23. Таким образом, для увеличения - процентной наработки системы необходимо увеличить надежность элементов 12, 13, 14 и 15 и снизить интенсивность их отказов с до ч , т.е. в 1.55 раза. 24. Результаты расчетов для системы с увеличенной надежностью элементов 12, 13, 14 и 15 приведены в таблице 7.1. Там же приведены расчетные значения вероятности безотказной работы системы “2 из 4” F` и системы в целом P`. При ч вероятность безотказной работы системы , что соответствует условиям задания. График приведен на рис 7.5. 25. Для второго способа увеличения вероятности безотказной работы системы - структурного резервирования - по тем же соображениям (см. п. 18) также выбираем элемент F, вероятность безотказной работы которого после резервирования должна быть не ниже (см. формулу (7.11)). 26. Для элемента F - системы “2 из 4” - резервирование означает увеличение общего числа элементов. Аналитически определить минимально необходимое количество элементов невозможно, т.к. число элементов должно быть целым и функция дискретна. 27. Для повышения надежности системы “2 из 4” добавляем к ней элементы, идентичные по надежности исходным элементам 12 - 15, до тех пор, пока вероятность безотказной работы квазиэлемента F не достигнет заданного значения. Для расчета воспользуемся комбинаторным методом (см. раздел 3.3): - добавляем элемент 16, получаем систему “2 из 5”: (7.13) (7.14) - добавляем элемент 17, получаем систему “2 из 6”: (7.15) (7.16) - добавляем элемент 18, получаем систему “2 из 7”: (7.17) (7.18)
28. Таким образом, для повышения надежности до требуемого уровня необходимо в исходной схеме (рис. 7.1) систему “2 из 4” достроить элементами 16, 17 и 18 до системы “2 из 7” (рис. 7.7). 29. Результаты расчетов вероятностей безотказной работы системы “2 из 7” F`` и системы в целом P`` представлены в таблице 7.1. 30. Расчеты показывают, что при ч , что соответствует условию задания. 31. На рис. 7.5 нанесены кривые зависимостей вероятности безотказной работы системы после повышения надежности элементов 12 - 15 (кривая ) и после структурного резервирования (кривая ). Выводы: 1. На рис. 7.5 представлена зависимость вероятности безотказной работы системы (кривая ). Из графика видно, что 50% - наработка исходной системы составляет часов. 2. Для повышения надежности и увеличения 50% - наработки системы в 1.5 раза (до часов) предложены два способа: а) повышение надежности элементов 12, 13, 14 и 15 и уменьшение их отказов с до ч ; б) нагруженное резервирование основных элементов 12, 13, 14 и 15 идентичными по надежности резервными элементами 16, 17 и 18 (рис. 7.7). 3. Анализ зависимостей вероятности безотказной работы системы от времени (наработки) (рис. 7.5) показывает, что второй способ повышения надежности системы (структурное резервирование) предпочтительнее первого, так как в период наработки до часов вероятность безотказной работы системы при структурном резервировании (кривая ) выше, чем при увеличении надежности элементов (кривая ).
Таблица 6.1 Численные значения параметров к заданию
ЛИТЕРАТУРА
1. Левин В.И. Логическая теория надежности сложных систем. - М.: Энергоатомиздат, 1985. - 128 с. 2. Надежность технических систем: Справочник/Под ред. Ушакова И.А. - М.: Радио и связь, 1985. - 608 с. 3. Нечипоренко В.И. Структурный анализ систем (эффективность и надёжность). - М.: Сов. радио, 1977. - 214 с. 4. Рябинин И.А., Черкесов Г.Н. Логико-вероятностные методы ис-следования надежности структурно-сложных систем. - М.: Радио и связь, 1981. - 216 с. 5. ГОСТ 27.002 - 83 Надежность в технике. Термины и определения. 6. Сотсков Б. С. Основы теории и расчета надежности элементов и устройств автоматики и вычислительной техники. - М.: Высш. школа, 1970. - 270 с.
ПРИЛОЖЕНИЕ
Биномиальные коэффициенты
Примечание: Для m>10 можно воспользоваться свойством симметрии:
Дата добавления: 2015-04-30; Просмотров: 356; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |