Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Многократное измерение




Многократное измерение проводится в основном в профессиональной метрологической деятельности а также при проведении точных измерений научных экспериментов. Они очень трудоемки и требуют затрат времени и средств, поэтому необходимость многократного измерения должна быть технико-экономически обоснована.

Рассмотрим последовательность действий при проведении многократного измерения.

1. Анализ априорной информации. Назначение анализа такое же, как при однократном измерении. При этом роль анализа в данном случае уменьшается за счет большого количества апостериорной информации, получаемой в процессе измерений (распределение вероятности результата измерений определяется экспериментально).

2. Получение n независимых значений отсчета. Эта основная измерительная процедура, которая может быть организованная по-разному:

· Если измерением измеряемой величины во времени можно пренебречь, то значения отсчета получают путем многократного повторения процедуры сравнения;

· Если известно, что измеряемая величина может существенно измениться, то ее измеряют одновременно несколькими средствами измерений, каждое из которых дает одно из значений отсчета.

3. Перевод значений отсчета в показания и внесение в них поправок. В результате этого действия получают n независимых результатов измерений. Если многократное измерение выполнялось одним средством измерения, то поправки могут изменяться за счет изменения во времени влияющих факторов. Если использовалось несколько средств измерений, то поправки отличаются из-за индивидуальных свойств средств измерений. Весь массив данных (где i=1..n) характеризует результат многократного измерения.

4. Исключение ошибок. Определяют точечные оценки результата измерения и проверяют по правилу «трех сигм» (или иначе) сомнительные результаты. Если ошибки есть, то их исключают и повторно определяют точечные оценки (способ ранее рассмотрен)

5. Проверки нормальности закона распределения вероятности результата измерения. Дальнейшая обработка результатов измерений производится в зависимости от того, является ли закон распределения вероятности нормальным или нет.

5.1. Строят гистограмму. По виду гистограммы уже можно определить, что закон распределения отличается от нормального закона. Если по гистограмме можно предположить что закон может быть нормальным эту гипотезу нужно математически доказать. При построении гистограммы учитывают следующие рекомендации:

· интервалы по оси абсцисс следует выбирать, по возможности одинаковыми;

· число интервалов зависит от n:

n 40..100 100..500 500..1000 1000..10000
k 7..9 8..12 10..16 12..22

· масштаб гистограммы целесообразно выбирать так, чтобы ее высота относилась к основанию как ½.

5.2. Проверка нормальности закона распределения по критерию Пирсона. Выдвигают гипотезу о том, что экспериментальные данные соответствуют нормальному закону. За меру расхождения экспериментальных данных с теоретическим законом принимают сумму квадратов отклонений отношения m/n от теоретической вероятности pi попадания отдельного значения в i-тый интервал (m – число результатов измерения в i-том интервале; n – число всех результатов измерения), причем каждое слагаемое умножают на коэффициент n/pi: , где k – число интервалов; n – число результатов, попавших в i-тый интервал; pi – вероятность попадания отдельного результата в i-тый интервал. Если расхождение случайно, то χ2 (коэффициент «ХИ-квадрат» или «коэффициент Пирсона») подчиняется распределению Пирсона. По этому распределению есть необходимые таблицы. По таблицам в зависимости от доверительной вероятности и числа интервалов можно определить табличный коэффициент χ02. Если χ2< χ02,то с установленной вероятностью можно признать случайным расхождение экспериментальных данных и теоретического закона распределения, что подтверждает гипотезу о выбранном теоретическом законе. Последовательность действий при проверке следующая:

· разбивают диапазон изменения Q на интервалы (5-30) так, чтобы в каждом интервале было не менее 5 значений;

· определяют значения ti для каждого i-ого интервала по формуле: , где Qi – наибольшее значение для i-ого интервала;

· определяют значение интеграла вероятности Лапласа L(ti) для каждого i;

· определяют ;

· определяют ;

· определяют χ2, сравнивают его с табличным значением χ02;

· делают заключение о законе распределения результата измерения.

Критерий согласия Пирсона широко применяется при n=40..50 и более.

5.3. Проверка нормальности закона распределения по составному критерию. Применяют при 10..15<n<40..50. Рассчитывают критерий по формуле: . Проверяют выполнение условия: , где dmin и dmax – коэффициенты, зависящие от вероятности P1*, с которой принимают решение. Они определяются по соответствующим таблицам. Если условие выполняется, то дополнительно проверяют «хвосты» теоретического и эмпирического распределения. При 10<n<20 считается допустимым отклонение одного из результатов Qi от среднего арифметического больше, чем на 2,5SQ; при 20<n<50 – двух, что соответствует доверительной вероятности P1**=0.98. Несоблюдение хотя бы одного из этих условий достаточно для того, чтобы гипотеза о нормальности распределения была отвергнута. В противном случае гипотеза принимается с вероятностью .

5.4. Решение принимается на основе априорной информации. При n<10 гипотеза о нормальности закона распределения вероятности результата измерения не проверяется.

6. Определение доверительного интервала.

6.1. При нормальном законе распределения вероятности результата измерения доверительный интервал определяется, как изложено в п.1.9.4: при n>40..50 определяется через функцию вероятности; при n<30..40 – по распределению Стьюдента.

6.2.
При отклонении гипотезы о нормальности закона распределения по виду гистограммы можно выдвинуть гипотезу хотя бы о симметричности закона. Гипотезы о симметричности закона распределения проверяются по тем же критериям. При этом в качестве теоретического закона выбирают одну из стандартных аппроксимирующих функций, вид которой можно определить по гистограмме или по априорной информации.

Пример: при измерении частоты на электронно-счетном частотомере заранее известно, что результат измерения распределен по треугольному закону, поэтому при малом влиянии других факторов можно принять именно эту функцию. По критерию согласия проверяется, согласуется ли характер экспериментальных данных с гипотезой о том, что результат измерения подчиняется выбранному закону распределения.

Особенность стандартных аппроксимирующих функций заключается в том, что они усеченные. Поэтому смысл доверительного интервала для них теряется. Вместо него по «МИ 1317-86 ГСИ. Результаты измерений и характеристики погрешностей измерений. Формы представлений …» используется аналог доверительного интервала, определяемый как ±a·S, где a – аналог коэффициента t, он берется из соответствующих таблиц (см. рисунок).

В случае, когда по гистограмме явно видно, что закон распределения несимметричный, то поступают следующим образом: устанавливают пределы, за которыми не может оказаться значение измеряемой величины при любом законе распределения (точность при этом, конечно, ниже). Для несимметричных законов среднее арифметическое и СКО уже не являются оценками результата измерения как ранее.

Неравенство Чебышева устанавливает, что вероятность того, что значение случайного числа при любом законе распределения не будет отличаться от среднего значения больше, чем на половину доверительного интервала:

(1.47)

В данном случае S определяется как:

(1.48)

По таблице определяют для доверительной вероятности значение t, по которому вычисляют доверительный интервал.

Если закон не нормальный, но симметричный, то значение можно оставить прежним (как при нормальном законе). Неравенство Чебышева в данном случае будет иметь вид:

(1.49)

При этом точность измерения более высокая.




Поделиться с друзьями:


Дата добавления: 2015-04-30; Просмотров: 986; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.018 сек.