КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Идентификация формы закона распределения погрешностей(построение гистограммы ) [1, 119 ;2, 65 ] Экспериментальные исследования погрешностей средств измерений различных типов показали, что существует много законов распределения погрешностей, причем часто они существенно отличаются от гауссовского. Поскольку знание реального закона распределения необходимо для выбора методики получения оценки измеряемой величины, то в необходимых случаях приходится выбирать закон распределения, в наибольшей мере соответствующей эксперимсентальным данным – идентифицировать форму закона распределения. Исходные данные для выбора закона распределения получают из гистограммы, т.е. экспериментально построенного графика статистического распределения погрешностей. Пример 1.6. Произвести статистическую обработку ряда наблюдений измеряемой величины X1; X 2; X 3; · · · X n-1; X n. Выявить и исключить промахи в результатах наблюдений. Определить значение результата измерения, предполагая отсутствие систематической погрешности, с учетом малого числа измерений одной и той же физической величины (использовать при этом критерий Стъюдента). Определить случайную среднеквадратическую погрешность среднеарифметических значений серии измерений Решение: 1.Исключаем из заданного ряда наблюдений грубые ошибки – промахи. Для этого найдём: а). среднеарифметическое значение (матожидание) результатов наблюдения где n – общее число наблюдений; б). абсолютные погрешности каждого наблюдения в). среднеквадратическое значение (СКО) одного ряда измерения г).обнаруживаем грубую ошибку (промах) по критерию Δ xi> 3σ1 и исключаем этот(и) результат(ы) из ряда измерений; Примечание: Следует обратить внимание, что критерий 3σ справедлив для заданной доверительной вероятности P = 0,997, если доверительная вероятность P = 0,95,то критерий равен 2σ, а при P = 0,9 − критерий равен σ. Если в условии задачи доверительная вероятность не задана, то её следует самостоятельно принять равной 0.997.
д).на основании оставшегося ряда измерений повторно определяем 2.Из оставшихся результатов наблюдения выстраиваем вариационный ряд, т.е. располагаем результаты в прядке возрастания их значений и выбираем минимальное 3.Разбиваем вариационный ряд на r – число равных интервалов – бинов. Число интервалов r определяется числом измерений n и может быть выбрано на основании табл. №1.2., рекомендованной ВНИИМ [9, 120 ]. Таблица №1.2. 4. Ширина бинов определяется по формуле
Следует соблюдать некоторую осторожность при выборе ширины бинов 5.Определяем границы интервалов между выбранными бинами: 6.Подсчитываем частоты mi, равные числу результатов, лежащих в каждом i – том интервале, т.е. меньших или равных его правой и больших левой границы
Этим правилом следует руководствоваться, чтобы граничные результаты дважды не попали в соседние бины. 6.Вычисляем частости, представляющих собой статистические оценкивероятностей попадания результатов измерения в i – интервал
где n – общее число наблюдений, оставшихся после исключения “промахов.” 7.Если теперь разделить частости на длину интервала,то получим величины, являющиеся оценками средней плотности распределения в интервале
Полученные результаты следует свести в следующую табл.№1.3. Таблица №1.3.
Форма полученной гисто-граммы позволяет сде-лать вывод о предпола-гаемом законе распре-деления погрешностей измерения. По форме гисто-граммы можно высказать предположение о “норма-льном” (“гауссовском”), “равномерном”, “треуго-льном” или “законе арксинуса”(см. раздел 1.4.3. настоящего пособия).
9.Определяем среднеквадратическое отклонение среднеарифметических значений серии измерений
где
Примечание: Если бы производили k серий измерений одной и той же величины по n измерений в каждом ряду, то полученные средне-арифметические значения 10.Записываем результат измерения (если n<50) в следующем виде
где Таблица №1.4.
Литература. 1.Бурдун Г.Д.,Марков Б.Н. Основы метрологии. Учебное пособие для вузов. − М.: Изд-во стандартов, 1985. 2.Дворяшин Б.В. Основы метрологии и радиоизмерения.– М.: Радио и связь, 1993.− 320 с.
Дисциплина: «Метрология, стандартизация и сертификация» Методические указания к контрольным заданиям по теме:
Дата добавления: 2015-04-30; Просмотров: 830; Нарушение авторских прав?; Мы поможем в написании вашей работы! |