Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Основные требования, предъявляемые к сталям




Стали и сплавы для режущего инструмента

 

 

 

Режущий инструмент работает в условиях длительного контакта и трения с обрабатываемым металлом. В процессе эксплуатации должны сохраняться неизменными конфигурация и свойства режущей кромки. Материал для изготовления режущего инструмента должен обладать высокой твердостью (> 60-62 HRC) и износостойкостью, т. е. способностью длительное время сохранять режущие свойства кромки в условиях трения.

 

Чем больше твердость обрабатываемых материалов, толще стружка, выше скорость резания, тем больше энергия, затрачиваемая на процесс обработки резанием. Механическая энергия переходит в тепловую. Выделяющаяся теплота нагревает резец, деталь, стружку и частично рассеивается. Поэтому основным требованием, предъявляемым к инструментальным материалам, является высокая теплостойкость, т. е. способность сохранять твердость и режущие свойства при длительном нагреве в процессе работы. По теплостойкости различают три группы инструментальных сталей для режущего инструмента: нетеплостойкие, полутепло-стойкие и теплостойкие.

 

При нагреве до 200-300 “С у нетеплостойких сталей в процессе резания углерод выделяется из мартенсита закалки и начинается коагуляция карбидов цементитного типа. Это приводит к потере твердости и износостойкости режущего инструмента. К нетеплостойким относятся углеродистые и низколегированные стали, содержащие до 3-4 % легирующих элементов. Полутеилостой-кие стали, к которым относятся некоторые среднелегированные стали, содержащие более 4 % хрома и другие карбидообразующие элементы, например 9Х5ВФ, сохраняют твердость до температур около 400 °С. Теплостойкие стали сохраняют твердость и износостойкость при нагреве до температур несколько выше 600 °С.

Углеродистые и низколегированные стали имеют сравнительно низкую теплостойкость и невысокую прокаливаемость, поэтому их используют для более легких условий работы при малых скоростях резания. Быстрорежущие стали, имеющие более высокую теплостойкость и прокаливаемость, применяют для более тяжелых условий работы. Еще более высокие скорости резания допускают твердые сплавы и керамические материалы. Из существующих материалов наибольшей теплостойкостью обладает нитрид бора - эльбор. Эльбор позволяет обрабатывать материалы высокой твердости, например закаленную сталь, при высоких скоростях.

 

Углеродистые стали (ГОСТ 1435—90)

 

Углеродистые инструментальные стали маркируются буквой У, а следующая за ней цифра показывает содержание углерода в десятых долях процента. Для изготовления инструмента применяют углеродистые качественные стали марок У 7 - У13 и высококачественные стали марок У7А У1 ЗА. Качественные стали содержат не более 0,03 % серы и фосфора, высококачественные - не более 0,02 %.

 

По назначению различают углеродистые стали для работы при ударных нагрузках и для статически нагруженного инструмента.

 

Стали марок У7 — У9 применяют для изготовления инструмента при работе с ударными нагрузками, от которого требуется высокая режущая способность (зубила, клейма по металлу, деревообделочный инструмент, в частности пилы, топоры и т. д.).

 

Стали марок У10 - У13 идут на изготовление режущего инструмента, не испытывающего при работе толчков, ударов и обладающего высокой твердостью (напильники, шаберы, острый хирургический инструмент и т. п.). Из стали этих марок иногда изготавливают также простые штампы холодного деформирования.

 

Углеродистые доэвтектоидные стали после горячей пластической обработки (ковки или прокатки) и последующего охлаждения на воздухе имеют структуру, состоящую из пластинчатого перлита и небольшого количества феррита, а заэвтектоидные стали - пластинчатого перлита и избыточного цементита, который обычно образует сплошную или прерывистую сетку по границам бывших зерен аустенита.

 

Термическая обработка углеродистых инструментальных сталей состоит из двух операций: предварительной и окончательной обработок.

Предварительная термическая обработка сталей заключается в отжиге при 740- 760 ‘С, цель которого - получить микроструктуру, состоящую из зернистого перлита - псевдоперлита, так как при такой микроструктуре после последующей закалки сталь приобретает наиболее однородные свойства. Кроме того, при такой структуре облегчается механическая обработка инструмента.

 

Окончательная термическая обработка состоит из закалки и низкого отпуска. Закалку проводят в воде от 780-810 °С, т. е. от температур, лежащих для доэвтектоидных сталей несколько выше Ас3, а для заэвтектоидных - ниже Д.!П.

 

Углеродистые стали имеют очень высокую критическую скорость закалки - порядка 200-300 °С/с. В связи с этим недопустимо даже малейшее замедление охлаждения при закалке, так как это может привести к частичному распаду аустенита при температурах перлитного интервала и, как следствие, к появлению мягких пятен. Особенно быстро протекает распад аустенита в углеродистых сталях при температурах, близких к 500-550 °С, где он начинается почти мгновенно, протекает чрезвычайно интенсивно и в течение нескольких секунд полностью заканчивается. Поэтому только инструменты малого диаметра могут после закалки в воде прокаливаться насквозь. Однако при этом в них возникают большие внутренние напряжения, которые могут вызвать существенные деформации.

 

Инструменты крупных размеров при закалке в воде и в водных растворах солей, кислот и щелочей, охлаждающая способность которых выше, чем воды, закаливаются на мартенсит лишь в тонком поверхностном слое. Структура же глубинных зон инструментов представляет собой продукты распада аустенита в перлитном интервале температур. Сердцевина инструментов, имеющая такую структуру, является менее хрупкой по сравнению с мартенситной структурой. Поэтому инструменты, имеющие такую сердцевину, лучше переносят толчки и удары по сравнению с инструментами, закаленными насквозь на мартенсит.

 

Углеродистые стали наиболее целесообразно применять для инструментов небольшого сечения (до 5 мм), которые можно закаливать в масле и достигать при этом сквозной прокаливае-мости, а также для инструментов диаметром или наименьшей толщиной 18-25 мм, в которых режущая часть приходится только на поверхностный слой, например напильники, зенкера, метчики.

 

Углеродистые инструментальные стали отпускают при температурах не более 200 °С во избежание снижения твердости. Твердость окончательно термически обработанного инструмен-

та из углеродистых сталей обычно лежит в интервале 56-64 HRC.

 

Достоинствами углеродистых инструментальных сталей являются низкая стоимость, хорошая обрабатываемость давлением и резанием в отожженном состоянии.

 

Их недостатками являются невысокие скорости резания, ограниченные размеры инструмента из-за низкой прокаливаемости и его значительные деформации после закалки в воде.

 




Поделиться с друзьями:


Дата добавления: 2015-05-06; Просмотров: 708; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.