КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Вопрос. Представление синусоидальных величин в виде вращающихся векторов на декартовой плоскости, в комплексной форме
Метод двух узлов Для цепей, содержащих два узла или сводящихся к таковым, можно применять метод двух узлов. При полностью графическом способе реализации метода он заключается в следующем: Строятся графики зависимостей токов во всех i-х ветвях в функции общей величины — напряжения между узлами m и n, для чего каждая из исходных кривых смещается вдоль оси напряжений параллельно самой себе, чтобы ее начало находилось в точке, соответствующей ЭДС в i-й ветви, а затем зеркально отражается относительно перпендикуляра, восстановленного в этой точке. Определяется, в какой точке графически реализуется первый закон Кирхгофа. Соответствующие данной точке токи являются решением задачи. Метод двух узлов может быть реализован и в другом варианте, отличающемся от изложенного выше меньшим числом графических построений. Синусоидальные токи и напряжения можно изобразить графически, записать при помощи уравнений с тригонометрическими функциями и представить в виде вращающихся векторов на декартовой или комплексной плоскости. Рисунок 2.3 - Графическое изображение синусоидальных напряжений Запишем синусоидальные напряжения с помощью тригонометрических функций: . (2.15) Значения в скобках синуса называют фазами синусоид, а значения фазы в начальный момент времени - начальной фазой. Величина ω называется угловой частотой: , [рад/с] (2.16) Где Т - период [c]; f - частота [Гц]. При совместном рассмотрении двух синусоидально изменяющихся величин одной частоты разность их фазовых углов, равную разности начальных фаз, называют углом сдвига фаз: . (2.17) Если α=0, то говорят, что сигналы синфазны, если α=π, то говорят, что сигналы в противофазе. Если α=+π/2 - в квадратуре. Т.е. е2 отстаёт от е1 на угол α. При изображении синусоидальных ЭДС, напряжений и токов вращающимися векторами на декартовой плоскости из начала координат проводят векторы, равные амплитудным значениям синусоидальных величин, и вращают эти векторы против часовой стрелки с угловой скоростью ω. Фазовый угол отсчитывают от положительной оси абсцисс.
Рисунок 2.4 - Изображение синусоидальных напряжений вращающимися векторами Проекции вращающихся векторов на ось ординат равны мгновенным значениям. Совокупность векторов, изображающих синусоидальные ЭДС, напряжения и токи одной частоты, называют векторными диаграммами. При построении векторных диаграмм часто удобно принимать t=0. При этом сложение и вычитание синусоидально изменяющихся величин можно заменить сложением и вычитанием их векторов: . (2.18) Результирующие напряжение также будет синусоидальным. Рисунок 2.5 - Изображение суммы двух синусоидальных напряжений в виде вращающегося вектора Определение амплитуды E3m и начальной фазы φe3 можно осуществить сложением изображающих их векторов. Вычитание мгновенных значений можно заменить вычитанием изображающих векторов . Рисунок 2.6 - Изображение разности двух синусоидальных напряжений в виде вращающегося вектора
Дата добавления: 2015-05-06; Просмотров: 728; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |