КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Вопрос. Физические основы полупроводниковой электроники. Полупроводники p и n типа
Физические основы П. э. Развитие П. э. стало возможным благодаря фундаментальным научным достижениям в области квантовой механики, физики твёрдого тела и физики полупроводников. В основе работы полупроводниковых (ПП) электронных приборов и устройств лежат следующие важнейшие свойства полупроводников и электронные процессы в них: одновременное существование носителей заряда двух знаков (отрицательных — электронов проводимости и положительных — дырок); сильная зависимость величины и типа электропроводности от концентрации и типа примесных атомов; высокая чувствительность к воздействию света и тепла, чувствительность к действию магнитного поля и механических напряжений; эффект односторонней проводимости при протекании тока через запирающий слой электронно-дырочного перехода (р—n -перехода) или Шотки барьера, нелинейность вольтамперных характеристик таких слоев, введение (инжекция) неосновных носителей, нелинейная ёмкость р—n -перехода; туннельный переход носителей сквозь потенциальный барьер (см. Туннельный эффект); лавинное размножение носителей в сильных электрических полях; переход носителей из одного минимума энергетической зоны в другой с изменением их эффективной массы и подвижности и др. Один из эффектов, наиболее широко используемых в П. э., — возникновение р—n -перехода на границе областей полупроводника с различными типами проводимости (электронной — в n -области, дырочной — в р -области); его основные свойства — сильная зависимость тока от полярности напряжения, приложенного к переходу (ток в одном направлении может в 106 раз и более превышать ток в др. направлении), и способность к инжекции дырок в n -область (или электронов в р -область) при включении напряжения в направлении пропускания тока через р—n -переход. Свойства, близкие к свойствам р—n -перехода, имеет барьер Шотки, обладающий вентильными свойствами (односторонней проводимостью), но не обладающий способностью к инжекции. И р—n -переход, и барьер Шотки обладают электрической ёмкостью, изменяющейся по нелинейному закону с изменением напряжения. При превышении внешним обратным напряжением определённой величины в них развиваются явления пробоя. Сочетание двух р—n- переходов, расположенных близко в одном кристалле полупроводника, даёт транзисторный эффект: эффект управления током запертого перехода с помощью тока отпертого перехода. Три р—n -перехода в одном кристалле, разделяющие четыре области попеременно электронной и дырочной проводимости, образуют тиристор. Решающее значение для П. э. имеет транзисторный эффект: именно на его основе работают ПП приборы основного типа — транзисторы, которые определили коренные изменения в радиоэлектронной аппаратуре и ЭВМ и обеспечили широкое применение систем автоматического управления в технике. К физическим явлениям, которые в начале 70-х гг. 20 в. стали использовать в П. э., относится иакустоэлектрический эффект в диэлектрических и ПП материалах. На основе этого эффекта оказалось возможным создавать усилители электрических колебаний, активные электрические фильтры, линии задержки с усилением сигнала, что привело к появлению нового направления П. э. — акустоэлектроники. Одна из наиболее общих черт развития П. э. — тенденция к интеграции самых различных физических эффектов в одном кристалле. П. э. начинает смыкаться с электроникой диэлектрических материалов (см.Диэлектрическая электроника), магнитных материалов и т.д., превращаясь постепенно в электронику твёрдого тела в самом широком смысле этого слова. Чистые i - полупроводники практически не используют. В них специально вводят атомы других элементов (примеси) трехвалентных (алюминий, галлий, индий, бор) или пятивалентных (мышьяк, фосфор, сурьма) элементов или их соединений. При этом на 107…108 атомов i - полупроводника вводят один атом примеси. Атомы пятивалентной примеси называются донорами: они увеличивают число свободных электронов. Каждый атом такой примеси добавляет один лишний электрон. При этом лишних дырок не образуется. Примесный атом в структуре полупроводника превращается в неподвижный положительно заряженный ион. Проводимость полупроводника теперь будет определяться в основном числом свободных электронов примеси. В целом такой тип проводимости называют проводимостью n– типа, а сам полупроводник – полупроводником n –типа. При введении трехвалентной примеси одна из валентных связей полупроводника оказывается незаполненной, что эквивалентно образованию дырки и неподвижного отрицательно заряженного иона примеси. Таким образом, в этом случае увеличивается концентрация дырок. Примеси такого типа называются акцепторам и, а проводимость, обусловленная введением акцепторной примеси, называют проводимостью р –типа. Полупроводник данного вида называют полупроводником р –типа. Преобладающие носители заряда в полупроводнике называются основными. Так в полупроводнике n –типа основными носителями являются электроны, а неосновными – дырки, а в полупроводнике р –типа основными носителями являются дырки, а неосновными – электроны. Как видим, в отличие от проводимости проводников, в которых ток обусловлен направленным движением только электронов, в полупроводниках ток может быть обусловлен двумя типами носителей – электронами и дырками.
Дата добавления: 2015-05-06; Просмотров: 1013; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |