Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

GaAs СБИС на основе полевых транзисторов Шоттки




Арсенид галлия занимает важное место в технологии создания СБИС повышенного быстродействия благодаря высокой подвижности электронов (8500 см2/(В*с) и скорости насыщения дрейфа носителей (2*107 см/с). Значительная ширина запрещенной зоны арсенида галлия (1,42 эВ) позволяет создавать на его основе сверхбыстродействующие гомоструктурные интегральные транзисторы, устойчивые к воздействию повышенной температуры и это же позволяет использовать полуизолирующие GaAs подложки, имеющие высокое удельное сопротивление до 108 Ом*см. Такие подложки обеспечивают низкий уровень паразитных связей между элементами интегральных схем.

Существует достаточно много изоструктурных аналогов арсенида галлия – полупроводниковых материалов, имеющих близкий к GaAs шаг кристаллической решетки, что позволяет использовать GaAs в качестве основы для создания широкого класса гетероструктурных транзисторов, обладающих уникальными характеристиками.

Кроме того, для создания гетероструктур широко используются различные твердые растворы (AlXGa1-XAs, GaXIn1-XP, GaXIn1-XAs, AlXIn1-XAs и др.).

Гомоструктурными называют транзисторы, изготовленные из однородного по составу полупроводника. Пути повышения быстродействия и снижения энергии переключения таких структур лежат в двух основных направлениях:

1. Сокращение размеров активных областей приборов и рабочих напряжений;

2. Использование полупроводников с высокой подвижностью и скоростью дрейфа носителей заряда.

Работа ПТШ основана на использовании контакта металл-полупроводник. Такой контакт получил название контакта Шоттки и он подобен p-n переходу и на его основе изготавливаются диоды Шоттки. Особенность в том, что работа контакта Шоттки основана на движении основных носителей заряда – электронов. в силу этого они отличаются высоким быстродействием. У контакта Шоттки также существует обедненная основными носителями заряда область, которая полностью располагается в полупроводнике, поскольку в нем концентрация носителей заряда много меньше, чем в металле. Полупроводник в обедненной области по своим электрическим свойствам близок к собственному. Эта область определяет толщину контакта. Толщина контакта Шоттки зависит от величины смещения. С увеличением обратного смещения толщина контакта, т.е. толщина обедненной области, возрастает.

Структура GaAs ПТШ изображена на рисунке. На монокристаллической полуизоли-рующей подложке GaAs с высоким удельным сопротивлением - обычно порядка 108 Ом*см – формируют тонкий электропроводный слой n-типа, который называется активным слоем. Активный слой обычно формируют ионной имплантацией или эпитаксиальным выращиванием тонкой пленки n-типа. В активном слое расположены области истока, затвора и стока. Для получения хороших омических контактов в активном слое под электродами истока и стока выполняют n+-области. Электрод затвора образует с активным слоем контакт Шоттки.

Принцип работы ПТШ следующий. К стоку прикладывается положительное напряжение относительно истока. К затвору - отрицательное. Поскольку затвор смещен в обратном направлении, то обедненный слой под затвором расширяется, в область активного слоя. Канал между стоком и истоком сужается, и ток, протекающий от стока к истоку, изменяется. При увеличении обратного смещения контакта Шоттки ток в канале сильно уменьшается. Таким образом, изменяя напряжение на затворе, можно управлять током стока.

Чем короче длина затвора, тем выше быстродействие прибора. Обычно длина затвора составляет ≥ 0,1 мкм.

Полевые транзисторы Шоттки широко используются в качестве элементной базы современных GaAs СБИС. Их преимущества по сравнению Si МДП структурами заключается в следующем:

1. Отсутствие p-n переходов между сток-истоковыми областями и областью канала, в результате чего минимальная длина канала ПТШ не ограничивается эффектом смыкания;

2. Подвижность электронов в GaAs 8500 см2/(В*с), что много больше подвижности электронов в кремнии ≈1200 см2/(В*с)

3. Обедненная область пространственного заряда управляющего перехода Шоттки локализует проводящий канал в объеме полупроводника, а не у поверхности полупроводник – диэлектрик, как в МДП транзисторах, что обеспечивает повышение подвижности носителей заряда в канале примерно в два раза.

4. Сравнительно простая структура интегральных ПТШ позволяет повысить процент выхода годных кристаллов СБИС за счет сокращения числа технологических операций и малого разброса параметров транзисторных структур по пластине.

ПТШ могут изготавливаться двух типов в зависимости от значения тока стока при нулевом напряжении на затворе.

Напряжение отсечки для транзистора типа D – отрицательно, для транзистора типа Е – положительно. Величина напряжения Uо составляет ≈ 2 В. Напряжение Uп ≈ 1 В. Формирования транзистора того или иного типа обеспечивается путем выбора толщины активного слоя n-типа и концентрацией донорной примеси. Транзисторы типа D обладают большей нагрузочной способностью.

При построении логических структур на ПШТ типа D необходимо иметь два источника питания. Это недостаток.

 

 




Поделиться с друзьями:


Дата добавления: 2015-05-06; Просмотров: 1100; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.