Индукционный счетчик представляет собой не что иное, как маломощный электродвигатель переменного тока с двумя обмотками – токовой и обмоткой напряжения. Проводящий диск, помещенный между обмотками, вращается под действием крутящего момента, пропорционального потребляемой мощности. Этот момент уравновешивается токами, наводимыми в диске постоянным магнитом, так что частота вращения диска пропорциональна потребляемой мощности. Число оборотов диска за то или иное время пропорционально полной электроэнергии, полученной за это время потребителем. Число оборотов диска считает механический счетчик, который показывает электроэнергию в киловатт-часах. Приборы такого типа широко применяются в качестве бытовых счетчиков электроэнергии. Их погрешность, как правило, составляет 0,5%; они отличаются большим сроком службы при любых допустимых уровнях тока.
Микропроце́ссор — 0%9F%D1%80%D0%BE%D1%86%D0%B5%D1%81%D1%81%D0%BE%D1%80"процессор (устройство, отвечающее за выполнение арифметических, логических операций и операций управления, записанных в 0%9C%D0%B0%D1%88%D0%B8%D0%BD%D0%BD%D1%8B%D0%B9_%D0%BA%D0%BE%D0%B4"машинном коде), реализованный в виде одной 0%9C%D0%B8%D0%BA%D1%80%D0%BE%D1%81%D1%85%D0%B5%D0%BC%D0%B0"микросхемыHYPERLINK \l "cite_note-1"[1] или комплекта из нескольких специализированных микросхем2"[2] (в отличие от реализации процессора в виде электрической схемы на элементной базе общего назначения или в виде программной модели). Первые микропроцессоры появились в 1970-х годах и применялись в электронных 0%9A%D0%B0%D0%BB%D1%8C%D0%BA%D1%83%D0%BB%D1%8F%D1%82%D0%BE%D1%80"калькуляторах, в них использовалась 0%94%D0%B2%D0%BE%D0%B8%D1%87%D0%BD%D0%BE-%D0%B4%D0%B5%D1%81%D1%8F%D1%82%D0%B8%D1%87%D0%BD%D1%8B%D0%B9_%D0%BA%D0%BE%D0%B4"двоично-десятичная арифметика 4-битных 0%9C%D0%B0%D1%88%D0%B8%D0%BD%D0%BD%D0%BE%D0%B5_%D1%81%D0%BB%D0%BE%D0%B2%D0%BE"слов. Вскоре их стали 0%92%D1%81%D1%82%D1%80%D0%B0%D0%B8%D0%B2%D0%B0%D0%B5%D0%BC%D0%B0%D1%8F_%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B0"встраивать и в другие устройства, например терминалы, 0%9F%D1%80%D0%B8%D0%BD%D1%82%D0%B5%D1%80"принтеры и различную 0%90%D0%B2%D1%82%D0%BE%D0%BC%D0%B0%D1%82%D0%B8%D0%B7%D0%B0%D1%86%D0%B8%D1%8F"автоматику. Доступные 8-битные микропроцессоры с 16-битной адресацией позволили в середине 1970-х годах создать первые бытовые 0%9C%D0%B8%D0%BA%D1%80%D0%BE%D0%BA%D0%BE%D0%BC%D0%BF%D1%8C%D1%8E%D1%82%D0%B5%D1%80"микрокомпьютеры.
Дополнительные сведения: 0%98%D1%81%D1%82%D0%BE%D1%80%D0%B8%D1%8F_%D0%B2%D1%8B%D1%87%D0%B8%D1%81%D0%BB%D0%B8%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D0%B9_%D1%82%D0%B5%D1%85%D0%BD%D0%B8%D0%BA%D0%B8"История вычислительной техники
Долгое время центральные процессоры создавались из отдельных микросхем малой и средней интеграции, содержащих от нескольких единиц до нескольких сотен транзисторов. Разместив целый процессор на одном чипе сверxбольшой интеграции, удалось значительно снизить его стоимость. Несмотря на скромное начало, непрерывное увеличение сложности микропроцессоров привело к почти полному устареванию других форм компьютеров. В настоящее время один или несколько микропроцессоров используются в качестве вычислительного элемента во всём, от мельчайших 0%92%D1%81%D1%82%D1%80%D0%B0%D0%B8%D0%B2%D0%B0%D0%B5%D0%BC%D0%B0%D1%8F_%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B0"встраиваемых систем и мобильных устройств до огромных 0%9C%D0%B5%D0%B9%D0%BD%D1%84%D1%80%D0%B5%D0%B9%D0%BC"мейнфреймов и 0%A1%D1%83%D0%BF%D0%B5%D1%80%D0%BA%D0%BE%D0%BC%D0%BF%D1%8C%D1%8E%D1%82%D0%B5%D1%80"суперкомпьютеров.
С начала 1970-х годов широко известно, что рост мощности микропроцессоров следует 0%97%D0%B0%D0%BA%D0%BE%D0%BD_%D0%9C%D1%83%D1%80%D0%B0"закону Мура, который утверждает, что число транзисторов на интегральной микросхеме удваивается каждые 18 месяцев. В конце 1990-х главным препятствием для разработки новых микропроцессоров стало тепловыделение (TDP).3"[3]
Некоторые авторы относят к микропроцессорам только устройства, реализованные строго на одной микросхеме. Такое определение расходится как с академическими источниками4"[4], так и с коммерческой практикой (например, варианты микропроцессоров Intel и AMD в корпусах типа SECC и подобных, такие как Pentium II, были реализованы на нескольких микросхемах).
В настоящее время, в связи с очень незначительным распространением процессоров, не являющихся микропроцессорами, в бытовой лексике термины «микропроцессор» и «процессор» практически равнозначны.
2. Классификация микропроцессоров По числу больших интегральных схем (БИС) в микропроцессорном комплекте различают микропроцессоры однокристальные, многокристальные и многокристальные секционные. Однокристальные микропроцессоры получаются при реализации всех аппаратных средств процессора в виде одной БИС или СБИС (сверхбольшой интегральной схемы). По мере увеличения степени интеграции элементов в кристалле и числа выводов корпуса параметры однокристальных микропроцессоров улучшаются. Однако возможности однокристальных микропроцессоров ограничены аппаратными ресурсами кристалла и корпуса. Для получения многокристального микропроцессора необходимо провести разбиение его логической структуры на функционально законченные части и реализовать их в виде БИС (СБИС). Функциональная законченность БИС многокристального микропроцессора означает, что его части выполняют заранее определенные функции и могут работать авто-номно. По назначению различают универсальные и специализированные микропроцессоры. Универсальные микропроцессоры могут быть применены для реше-ния широкого круга разнообразных задач. При этом их эффективная производительность слабо зависит от проблемной специфики решаемых задач. Специализация МП, т.е. его проблемная ориентация на ускоренное выполнение определенных функций позволяет резко увеличить эффективную производительность при решении только определенных задач. Среди специализированных микропроцессоров можно выделить различные микроконтроллеры, ориентированные на выполнение сложных последовательностей логических операций, математические МП, предназначенные для повышения производительности при выполнении арифметических операций за счет, например, матричных методов их выполнения, МП для обработки данных в различных областях применений и т. д. С помощью специализированных МП можно эффективно решать новые сложные задачи параллельной обработки данных. По виду обрабатываемых входных сигналов различают цифровые и аналоговые микропроцессоры. Сами микропроцессоры цифровые устройства, однако, могут иметь встроенные аналого-цифровые и цифро-аналоговые преобразователи. Поэтому входные аналоговые сигналы передаются в МП через преобразователь в цифровой форме, обрабатываются и после обратного преобразования в аналоговую форму поступают на выход. С архитектурной точки зрения такие микропроцессоры представляют собой функциональные аналоговые преобразователи сигналов и называются аналоговыми микропроцессорами. Они выполняют функции любой аналоговой схемы (например, производят генерацию колебаний, модуляцию, смещение, фильтрацию, кодирование и декодирование сигналов в реальном масштабе времени и т.д., заменяя сложные схемы, состоящие из операционных усилителей, катушек индуктивности, конденсаторов и т.д.). Отличительная черта аналоговых микропроцессоров способность к переработке большого объема числовых данных, т. е. к выполнению операций сложения и умножения с большой скоростью при необходимости даже за счет отказа от операций прерываний и переходов. Сравнение цифровых микропроцессоров производится сопоставлением времени выполнения ими списков операций. Сравнение же аналоговых микропроцессоров производится по количеству эквивалентных звеньев аналого-цифровых фильтров рекурсивных фильтров второго порядка. Производительность аналогового микропроцессора определяется его способностью быстро выполнять операции умножения: чем быстрее осуществляется умножение, тем больше эквивалентное количество звеньев фильтра в аналоговом преобразователе и тем более сложный алгоритм преобразования цифровых сигналов можно задавать в микропроцессоре. По характеру временной организации работы микропроцессоры делят на синхронные и асинхронные. Синхронные микропроцессоры - микропроцессоры, в которых начало и конец выполнения операций задаются устройством управления (время выполнения операций в этом случае не зависит от вида выполняемых команд и величин операндов). Асинхронные микропроцессоры позволяют начало выполнения каждой следующей операции определить по сигналу фактического окончания выполнения предыдущей операции. Для более эффективного использования каждого устройства микропроцессорной системы в состав асинхронно работающих устройств вводят электронные цепи, обеспечивающие автономное функционирование устройств. Закончив работу над какой-либо операцией, устройство вырабатывает сигнал запроса, означающий его готовность к выполнению следующей операции. При этом роль естественного распределителя работ принимает на себя память, которая в соответствии с заранее установленным приоритетом выполняет запросы остальных устройств по обеспечению их командной информацией и данными. По организации структуры микропроцессорных систем различают микроЭВМ одно - и многомагистральные. В одномагистральных микроЭВМ все устройства имеют одинаковый интерфейс и подключены к единой информационной магистрали, по которой передаются коды данных, адресов и управляющих сигналов. В многомагистральных микроЭВМ устройства группами подключа-ются к своей информационной магистрали. Это позволяет осуществить одновременную передачу информационных сигналов по нескольким (или всем) магистралям. Такая организация систем усложняет их конструкцию, однако увеличивает производительность. По количеству выполняемых программ различают одно- и многопрограммные микропроцессоры. В однопрограммных микропроцессорах выполняется только одна программа. Переход к выполнению другой программы происходит после завершения текущей программы. В много- или мультипрограммных микропроцессорах одновременно выполняется несколько (обычно несколько десятков) программ. Организация мультипрограммной работы микропроцессорных управляющих систем позволяет осуществить контроль за состоянием и управлением большим числом источников или приемников информации.
Основные характеристики микропроцессоров 1. Тактовая частота микропроцессора Импульсы тактовой частоты поступают от задающего генератора, располо-женного на системной плате. Тактовая частота микропроцессора - количество импульсов, создаваемых генератором за 1 секунду. Тактовая частота необходима для синхронизации работы устройств ПК. Влияет на скорость работы микропроцессора. Чем выше тактовая частота, тем выше его быстродействие. 2. Быстродействие микропроцессора. Быстродействие микропроцессора - это число элементарных операций, вы-полняемых микропроцессором в единицу времени (операции/секунда). 3. Разрядность процессора. Разрядность процессора - максимальное количество разрядов двоичного кода, которые могут обрабатываться или передаваться одновременно. 4. Функциональное назначение микропроцессора. 1. Универсальные, т.е. основные микропроцессоры. Они аппаратно могут выполнять только арифметические операции и только над целыми числами, а числа с плавающей точкой обра-батываются на них программно. 2. Сопроцессоры. Микропроцессорный элемент, дополняющий функциональные возможности основного процессора. Сопроцессор расширяет набор команд компьютера. Когда основной процессор получает команду, которая не входит в его рабочий набор, он может пере-дать управление сопроцессору, в рабочий набор которого входит эта команда. Например, существуют сопроцессоры математические, графические и т.д. 5. Архитектура микропроцессора. В соответствии с архитектурными особенностями, определяющи-ми свойства системы команд, различают: 1. Микропроцессоры с CISC архитектурой. CISC - Complex Instruction Set Computer - Компьютерp со сложной системой команд. Исторически они первые и включают большое количество команд. Все микропроцессоры фирмы INTEL относятся к категории CISC. 2. Микропроцессоры с RISC архитектурой.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление