КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Закон Ома
Утверждает, что сила постоянного тока в проводнике пропорциональна напряжению на концах проводника. U = IR, где U -напряжение, измеряется в вольтах; I - сила тока, измеряется в амперах; R -сопротивление, измеряется в омах. Первым индикатором электрического тока был мультипликатор который составлял собой рамку, состоящую из нескольких витков проволоки, внутри которой помещалась магнитная стрелка. Опыты показали, что увеличение числа витков катушки усиливает действие тока на стрелку Однако вследствие влияния земного магнетизма на магнитную стрелку мультипликатора его показания были неточными. В 1821 г. была найдена (Ампером) возможность устранения влияния земного магнетизма с помощью астатической пары, представляющей собой две магнитные стрелки, укрепленные на общей оси и расположенные параллельно друг другу, причем полюсы стрелок обращены в разные стороны. В 1825 г. итальянский физик Л. Нобили скомбинировал астатическую пару с мультипликатором и устроил более чувствительный прибор. 3. Зарождение электротехники (1830—1870 гг.) Самым знаменательным событием этого периода явилось открытие М. Фарадеем явления электромагнитной индукции, создание первого электромашинного генератора. Разрабатываются разнообразные конструкции электрических машин и приборов, формулируются законы Ленца и Кирхгофа, создаются первые источники электрического освещения, первые электроавтоматические приборы, зарождается электроизмерительная техника. Однако широкое практическое применение электрической энергии было невозможно из-за отсутствия экономичного электрического генератора. Явление электромагнитной индукции было открыто выдающимся английским физиком М. Фарадеем в 1831 г. Оно заключается в возникновении электрического тока в замкнутом проводящем контуре при изменении во времени магнитного потока, пронизывающего контур. Магнитным потоком Φ через площадь S контура называют величину Φ = B · S · cos α, где B – модуль вектора магнитной индукции, α – угол между вектором В и нормалью n к плоскости контура Фарадей экспериментально установил, что при изменении магнитного потока в проводящем контуре возникает ЭДС индукции Eинд, равная скорости изменения магнитного потока через поверхность, ограниченную контуром, взятой со знаком минус: Закон Ленца - основное правило, охватывающее все случаи электромагнитной индукции и позволяющее установить направление возникающей э.д.с. индукции. Первый закон Кирхгофа вытекает из закона сохранения заряда. Он состоит в том, что алгебраическая сумма токов, сходящихся в любом узле, равна нулю. Второй закон Кирхгофа: алгебраическая сумма мгновенных ЭДС в контуре равна алгебраической сумме мгновенных напряжений на всех других элементах контура.
4. Становление электротехники как самостоятельной отрасти техники (1870—1890 гг.) Создание первого измышленного электромашинного генератора с самовозбуждением (динамомашины) открывает новый этап в развитии электротехники, которая становится самостоятельной отраслью техники. В связи с развитием промышленности, ростом городов возникает острая потребность в электрическом освещении, начинается строительство «домовых» электрических станций, вырабатывающих постоянный ток. Электрическая энергия становится товаром, и все более остро ощущается необходимость централизованного производства и экономичной передачи электроэнергии на значительные расстояния. Решить эту проблему на базе постоянного тока было нельзя из-за невозможности трансформации постоянного тока. Значительным стимулом к внедрению переменного тока явилось изобретение «электрической свечи» П. Н. Яблочковым и разработка им схемы дробления электрической энергии посредством индукционных катушек, представлявших собой трансформатор с разомкнутой магнитной системой. Однако однофазные двигатели были непригодны для целей промышленного электропривода. Одновременно разрабатываются способы передачи электрической энергии на большие расстояния посредством значительного повышения напряжения линий электропередач. Дальнейшее развитие электрического освещения способствовало совершенствованию электрических машин и трансформаторов; в середине 80-х гг. началось серийное производство однофазных трансформаторов с замкнутой магнитной системой (М. Дери, О. Блати, К. Циперновский). Идея П. Н. Яблочкова о централизованном производстве и распределении электроэнергии претворяется в жизнь, начинается строительство центральных электростанций переменного тока. Однако развивающееся производство требовало комплексного решения сложнейшей научно-технической проблемы: экономичной передачи электроэнергии на дальние расстояния и создания экономичного и надежного электрического двигателя, удовлетворяющего требованиям промышленного электропривода. Эта проблема была успешно решена на основе многофазных, в частности трехфазных систем.
5. Становление и развитие электрификации (с 1891 г.) Важнейшей предпосылкой разработки трехфазных систем явилось открытие (1888 г.) явления вращающегося магнитного поля. Первые многофазные двигатели были двухфазными. Трехфазная система оказалась наиболее рациональной, так как имела ряд преимуществ как перед однофазными цепями, так и перед другими многофазными системами. В разработку трехфазных систем большой вклад сделали ученые и инженеры разных стран. Но как будет показано далее, наибольшая заслуга принадлежит М. О. Доливо-Добровольскому, сумевшему придать своим работам практический характер, создавшему трехфазные синхронные генераторы и асинхронные двигатели, трансформаторы.
Первой демонстрацией мощной, по тому времени, трехфазной электропередачи была передача, устроенная между Лауфеном на р. Неккар и Франкфуртом-на-Майне в 1891 г. по случаю электротехнической выставки во Франкфурте, бывшей в том же году. Франкфуртскую выставку можно считать эпохой зарождения электротехники трехфазного тока, внесшей переворот в решения целого ряда электротехнических проблем и решившей много вопросов, до того считавшихся неразрешимыми. Среди них - основной вопрос - вопрос об электрической передаче энергии на большие расстояния, который до тех пор не удавалось решить сколько-нибудь удовлетворительно как с технической, так и с экономической точек зрения. Основной причиной указанных трудностей была, как известно, невозможность получения от динамомашин постоянного тока достаточно высокого напряжения для больших электропередач. Постоянный ток средних напряжений, который удавалось получить от динамомашин постоянного тока и который был бы достаточен для небольших электропередач (5 000 - 7 000 вольт), невозможно было использовать для приемников с напряжением 100 - 500 вольт. Применение однофазного тока было исключено из-за отсутствия пригодных для практики двигателей однофазного тока. Применение трехфазного тока устраняло все эти затруднения, и Лауфен-Франкфуртская электропередача была блестящей иллюстрацией мирового значения изобретений Доливо-Добровольского. С этого времени начинается бурное развитие электрификации: строятся мощные электростанции, возрастает напряжение электропередач, разрабатываются новые конструкции электрических машин, аппаратов и приборов. Электрический двигатель занимает господствующее положение в системе промышленного привода. Процесс электрификации постепенно охватывает все новые области производства: развивается электрометаллургия, электротермия, электрохимия. Электрическая энергия начинает все более широко использоваться в самых разнообразных отраслях промышленности, на транспорте, в сельском хозяйстве и в быту. Широкое применение переменного тока потребовало теоретического осмысления и математического описания физических процессов, происходящих в электрических машинах, линиях электропередач, трансформаторах. Расширяются исследования явлений в цепях переменного тока с помощью векторных и круговых диаграмм. Огромную прогрессивную роль в анализе процессов в цепях сыграл комплексный метод, предложенный в 1893—1897 гг. Ч. П. Штейнмецом. С развитием крупных энергосистем и увеличением дальности электропередач возникла серьезная научно-техническая проблема обеспечения устойчивости параллельной работы генераторов электростанции, которая была решена отечественными и зарубежными учеными. Теоретические основы электротехники становятся базой учебных дисциплин в вузах и фундаментом научных исследований в области электротехники.
Дата добавления: 2015-05-06; Просмотров: 792; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |