Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Свойства p-n перехода




ВТОРОЙ ЗАКОН КИРХГОФА

Второй закон Кирхгофа определяет зависимость между падениями напряжений и ЭДС в замкнутых контурах и имеет следующий вид (рис.3) и определение:

алгебраическая сумма (с учетом знака) падений напряжений на всех ветвях любого замкнутого контура цепи, равна алгебраической сумме ЭДС ветвей этого контура.

При отсутствии в контуре ЭДС сумма падений напряжений равна 0.

Теперь несколько пояснений по практическому применению этого правила Кирхгофа:

поскольку, алгебраическая сумма требует учета знака следует выбрать направление обхода контура (на рис.3 - по часовой стреклке), токи и напряжения, совпадающие с этим направлением считать положительными, иные - отрицательными.

Исключительно важные свойства полупроводников, предопределившие их чрезвычайно широкое применение, проявляются в пограничной области, вернее в очень узком слое вещества между двумя частями полупроводника, обладающими проводимостями различных видов. Этот слой получил название электронно-дырочного перехода или сокращенно р-n-перехода. Определяющее свойство р-n-перехода – его односторонняя проводимость.

Упрощенно механизм односторонней проводимости можно объяснить следующим образом, рисунок ниже:

Так как в области р с дырочной проводимостью подвижных электронов значительно меньше, чем в области п с электронной проводимостью, то электроны из n-слоя начинают переходить в р-слой (у их границы), а дырки в то же время будут двигаться в обратном направлении. При этом электрическая нейтральность каждой области окажется нарушенной. В пограничном слое с проводимостью типа а образуется положительный объемный заряд, а в р-области, то есть по другую сторону границы,— отрицательный. Таким образом, в тонком слое полупроводника у границы раздела р- и n-областей образуются две зоны объемных разноименных электрических зарядов. Этот слой и представляет собой собственно р-n-переход. Естественно, возникновение разноименных зарядов влечет за собой появление электрического поля. Это поле препятствует проникновению электронов в р-область, а дырок в «-область, причем настолько эффективно, что лишь отдельные электроны и дырки, обладающие повышенной энергией, могут преодолевать его тормозящее действие. Наступает стабильное состояние р-n-перехода.

Если к полупроводнику приложить электрическое напряжение, то в зависимости от полярности этого напряжения р-n-переход проявляет совершенно различные свойства.

Когда отрицательный полюс источника подключен к n-области кристалла, а положительный — к р-области:

внешнее электрическое поле и поле р-n-перехода направлены в противоположные стороны. Поэтому электрическое поле р-n-перехода окажется в значительной степени ослабленным, и теперь уже электроны из n-области смогут проникать в р-область, а дырки из р-области в n-область. Таким образом, в цепи источник питания — полупроводник возникает ток. Полярность приложенного напряжения, при которой через полупроводник протекает ток (как в описанном случае), получила название прямой полярности. Когда же отрицательный полюс источника питания подключен к р-области кристалла, а положительный к n-области:

 

электрические поля источника и р-n-перехода совпадают. Суммарное поле возрастает и в еще большей степени (чем до присоединения источника питания) будет препятствовать передвижению электрических зарядов через р-n-переход. Если рассматривать идеальный случай, то электрического тока через переход не будет. Такую полярность приложенного к кристаллу напряжения называют обратной.

Итак, с определенной долей приближения можно считать, что электрический ток через р-n-переход протекает, если полярность напряжения источника питания прямая, и, напротив, тока нет, когда полярность обратная.

Однако в реальных условиях в полупроводнике, кроме основных носителей электрических зарядов — электронов и дырок, образующихся при введении примесей, имеются, как было показано, и неосновные носители зарядов (их значительно меньше) электроны п дырки, образующиеся вследствие теплового движения атомов в кристалле. Часть этих электронов и дырок способна проходить (дрейфовать) через р-n-переход даже при обратной полярности приложенного к полупроводнику напряжения, создавая так называемый обратный ток, который, разумеется, несравнимо меньше прямого тока. Следовательно, р-n-переход полупроводника весьма определенно проявляет свойство односторонней проводимости, что дает возможность рассматривать кристалл в качестве вентиля. Вольт-амперная характеристика р-n-перехода

показывает, что уже при сравнительно небольших прямых напряжениях сопротивление перехода падает, а прямой ток резко увеличивается.

У полупроводников обратные напряжения Uобр значительно больше прямых Uпр, а обратные токи намного слабее прямых токов, однако при некотором возросшем значении обратного напряжения наступает явление так называемого пробоя р—п-перехода и обратный ток резко возрастает (точка А). В этом режиме напряжение на диоде изменяется очень мало, даже при изменении тока через прибор в весьма широких пределах, то есть полупроводник ведет себя как стабилитрон. Подобный режим, который будет аварийным для полупроводниковых выпрямителей, успешно используется в устройствах стабилизации напряжения.

 

Еще одна интересная особенность р-n-перехода заключается в том, что в диапазоне обратных напряжений, не превышающих напряжения пробоя, переход проявляет емкостные свойства, то есть ведет себя как конденсатор, причем емкость перехода обратно пропорциональна приложенному напряжению. Это свойство широко используется там, где возникает необходимость применения конденсаторов переменной емкости, перестраиваемых пе вручную, а автоматически — в зависимости от обратного напряжения, приложенного к р-n-переходу.




Поделиться с друзьями:


Дата добавления: 2015-05-06; Просмотров: 1151; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.014 сек.