КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
P-n-переход и его свойства
В p-n-переходе концентрация основных носителей заряда в p- и n-областях могут быть равными или существенно различаться. В первом случае p-n-переход называется симметричным, во втором - несимметричным. Чаще используются несимметричные переходы. Пусть концентрация акцептной примеси в p-области больше, чем концентрация донорной примеси в n-области (рис. 1.1,а). Соответственно и концентрация дырок (светлые кружки) в p-области будет больше, чем концентрация электронов (черные кружки) в n-области. За счет диффузии дырок из p-области и электронов из n-области они стремятся равномерно распределится по всему объему. Если бы электроны и дырки были нейтральными, то диффузия в конечном итоге привела бы к полному выравниванию их концентрации по всему объему кристалла. Однако этого не происходит. Дырки, переходя из p-области в n-область, рекомбинируют с частью электронов, принадлежащих атомам донорной примеси. В результате оставшиеся без электронов положительно заряженные ионы донорной примеси образуют приграничный слой с положительным зарядом. В тоже время уход этих дырок из p-области приводит к тому, что атомы акцепторной примеси, захватившие соседний электрон, образуют нескомпенсированный отрицательный заряд ионов в приграничной области. Аналогично происходит диффузионное перемещение электронов из n-области в p-область, приводящее к тому же эффекту.
В результате на границе, разделяющей n-область и p-область, образуется узкий, в доли микрона, приграничный слой l, одна сторона которого заряжена отрицательно (p-область), а другая - положительно (n-область). Разность потенциалов, образованную приграничными зарядами, называют контактной разностью потенциалов U (рис 1.1,а) или потенциальным барьером, преодолеть который носители не в состоянии. Дырки, подошедшие к границе со стороны p-области, отталкиваются назад положительным зарядом, а электроны, подошедшие из n-области, - отрицательным зарядом. Контактной разностью потенциалов U соответствует электрическое поле напряженностью Е . Таким образом, образуется p-n-переход шириной l, представляющий собой слой полупроводника с пониженным содержанием носителей - так называемый обедненный слой, который имеет относительно высокое электрическое сопротивление R . Свойства p-n-структуры изменяются, если к ней приложить внешнее напряжение Uпр. Если внешнее напряжение противоположно по знаку контактной разности потенциалов и напряженность внешнего поля Епр противоположна Е (рис. 1.1,б), то дырки p-области, отталкиваясь от приложенного положительного потенциала внешнего источника, приближаются к границе между областями, компенсируют заряд части отрицательных ионов и сужают ширину р-n-перехода со стороны p-области. Аналогично, электроны n-области, отталкиваясь от отрицательного потенциала внешнего источника, компенсируют заряд части положительных ионов и сужают ширину p-n-перехода со стороны n-области. Потенциальный барьер сужается, через него начинают проникать дырки из p-области и электроны из n-области и через p-n-переход начинает течь ток. С увеличением внешнего напряжения ток возрастает неограниченно, так как создается основными носителями, концентрация которых постоянно восполняется источником внешнего напряжения. Полярность внешнего напряжения, приводящая к снижению потенциального барьера, называется прямой, открывающей, а созданный ею ток - прямым. При подаче такого напряжения p-n-переход открыт и его сопротивление Rпр<<R . Если к p-n-структуре приложить напряжение обратной полярности Uобр (рис. 1.1,в), эффект будет противоположный. Электрическое поле напряженностью Еобр совпадает по направлению с электрическим полем Е р-n-перехода. Под действием электрического поля источника дырки p-области смещаются к отрицательному потенциалу внешнего напряжения, а электроны n-области - к положительному потенциалу. Таким образом, основные носители заряда отодвигаются внешним полем от границы, увеличивая ширину p-n-перехода, который оказывается почти свободным от носителей заряда. Электрическое сопротивление p-n-перехода при этом возрастает. Такая полярность внешнего напряжения называется обратной, запирающей. При подаче такого напряжения p-n-переход закрыт и его сопротивление Rобр>>R . Тем не менее при обратном напряжении наблюдается протекание небольшого тока Iобр. Этот ток в отличие от прямого определяется носителями не примесной, а собственной проводимости, образующейся в результате генерации пар "свободный электрон - дырка" под воздействием температуры. Эти носители обозначены на рис. 1.1,в единственный электрон в p-области и единственной дыркой в n-области. Значение обратного тока практически не зависит от внешнего напряжения. Это объясняется тем, что в единицу времени количество генерируемых пар "электрон - дырка" при неизменной температуре остается постоянным, и даже при Uобр в доли вольт все носители участвуют в создании обратного тока. При подаче обратного напряжения p-n-переход уподобляется конденсатору, пластинами которого является p- и n-области, разделенные диэлектриком. Роль диэлектрика выполняет приграничная область, почти свободная от носителей заряда. Эту емкость p-n-перехода называют барьерной. Она тем больше, чем меньше ширина p-n-перехода и чем больше его площадь. Принцип работы p-n-перехода характеризуется его вольт-амперной характеристикой. На рис.1.2 показана полная вольт-амперная характеристика открытого и закрытого p-n-переходов.
Как видно, эта характеристика является существенно нелинейной. На участке 1 Епр< Е и прямой ток мал. На участке 2 Епр> Е , запирающий слой отсутствует, ток определяется только сопротивлением полупроводника. На участке 3 запирающий слой препятствует движению основных носителей, небольшой ток определяется движением неосновных носителей заряда. Излом вольт-амперной характеристики в начале координат обусловлен различными масштабами тока и напряжения при прямом и обратном направлениях напряжения, приложенного к p-n-переходу. И наконец, на участке 4 при Uобр=Uпроб происходит пробой p-n-перехода и обратный ток быстро возрастает. Это связанно с тем, что при движении через p-n-переход под действием электрического поля неосновные носители заряда приобретают энергию, достаточную для ударной ионизации атомов полупроводника. В переходе начинается лавинообразное размножение носителей заряда - электронов и дырок, - что приводит к резкому увеличению обратного тока через p-n-переход при почти неизменном обратном напряжении. Этот вид электрического пробоя называется лавинным. Обычно он развивается в относительно широких p-n-переходах, которые образуются в слаболегированных полупроводниках. В сильнолегированных полупроводниках ширина запирающего слоя меньше, что препятствует возникновению лавинного пробоя, так как движущиеся носители не приобретают энергию, достаточной для ударной ионизации. В тоже время может возникать электрический пробой p-n-перехода, когда при достижении критического напряжения электрического поля в p-n-переходе за счет энергии поля появляются пары носителей электрон - дырка, и существенно возникает обратный ток перехода. Для электрического пробоя характерна обратимость, заключающаяся в том, что первоначальные свойства p-n-перехода полностью восстанавливаются, если снизить напряжение на p-n-переходе. Благодаря этому электрическому пробою используют в качестве рабочего режима в полупроводниковых диодах. Если температура p-n-перехода возрастает в результате его нагрева обратным током и недостаточного теплоотвода, то усиливается процесс генерации пар носителей заряда. Это, в свою очередь, приводит к дальнейшему увеличению тока (участок 5 рис. 1.2) и нагреву p-n-перехода, что может вызвать разрушение перехода. Такой процесс называется тепловым пробоем. Тепловой пробой разрушает p-n-переход.
Дата добавления: 2015-05-06; Просмотров: 1036; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |