КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Виды сопротивлений в цепях переменного тока
В цепях переменного тока сопротивления разделяют на активные и реактивные. В активных сопротивлениях, включенных в цепь переменного тока, электрическая энергия преобразуется в тепловую. Активным сопротивлением R обладают, например, провода электрических линий, обмотки электрических машин и т.д. В реактивных сопротивлениях электрическая энергия, вырабатываемая источником, не расходуется. При включении реактивного сопротивления в цепь переменного тока возникает лишь обмен энергией между ним и источником электрической энергии. Реактивное сопротивление создают индуктивности и ёмкости. Если не учитывать взаимное влияние отдельных элементов электрической цепи, то в общем случае электрическая цепь синусоидального тока может быть представлена тремя пассивными элементами: активным сопротивлением R, индуктивностью L и емкостью C. Активное сопротивление в цепи переменного тока. При включении в цепь переменного тока активного сопротивления, ток и напряжение совпадают по фазе (рис. 3.7) и изменяются по одному и тому же cинусоидальному закону: u=Um·sinωt. Они одновременно достигают своих максимальных значений и одновременно проходят через нуль (рис. 3.7.б). Для цепи переменного тока, содержащей только активное сопротивление, закон Ома имеет такую же форму, как и для цепи постоянного тока: I=U/R. Электрическая мощность р в цепи с активным сопротивлением в любой момент времени равна произведению мгновенных значений силы тока i и напряжения u: p=ui. Из графика видно, что изменение мощности происходит с двойной частотой по отношению к изменению тока и напряжения, т.е. один период изменения мощности соответствует половине периода изменения тока и напряжения. Все значения мощности положительные, это означает, что энергия передается от источника к потребителю. Средняя мощность Рcp, потребляемая активным сопротивлением, P=UI=I2R – это и есть активная мощность. Под индуктивностью L будем понимать элемент электрической цепи (катушку индуктивности, потерями которой можно пренебречь), способный запасать энергию в своём магнитном поле, который не имеет активного сопротивления и ёмкости С ( рис.3.8). При включении в цепь переменного тока индуктивности, изменяющийся ток непрерывно индуцирует в ней э.д.с. самоиндукции eL= LΔi/Δt, где Δi/Δt – скорость изменения тока.
Рисунок 3.7. Схема включения в цепь переменного тока активного сопротивления R (a), кривые тока i, напряжения u и мощности p (б) и векторная диаграмма.
Когда угол ωt равен 90° и 270° скорость изменения тока Δi/Δt =0, поэтому э.д.с. eL =0. Скорость изменения тока будет наибольшей, когда угол ωt равен 0°, 180° и 360°. В эти минуты времени э.д.с. имеет наибольшее значение. Кривая мощности представляет собой синусоиду, которая изменяется с двойной частотой по сравнению с частотой изменения тока и напряжения. Мощность имеет положительные и отрицательные значения, т.е. возникает непрерывный колебательный процесс обмена энергией между источником и индуктивностью.
Рисунок 3.8. Схема включения в цепь переменного тока индуктивности (а), кривые тока i, напряжения u, э.д.с. eL (б) и векторная диаграмма (в)
Э.д.с. самоиндукции согласно правилу Ленца направлена так, чтобы препятствовать изменению тока. В первую четверть периода, когда ток увеличивается, э.д.с. имеет отрицательное значение (направлена против тока). Во вторую четверть периода, когда ток уменьшается, э.д.с. имеет положительное значение (совпадает по направлению с током). В третью четверть периода ток меняет своё направление и увеличивается, поэтому э.д.с. направлена против тока и имеет положительное значение. В четвёртую четверть периода ток уменьшается и э.д.с. самоиндукции стремится поддержать прежнее положение тока и имеет отрицательное значение. В результате ток отстает от напряжения по фазе на угол 90О. Сопротивление катушки или проводника переменному току, вызванное действием э.д.с. самоиндукции, называется индуктивным сопротивлением ХL [Ом]. Индуктивное сопротивление не зависит от материала катушки и от площади поперечного сечения проводника. В цепях переменного тока катушки индуктивности соединяют последовательно и параллельно. При последовательном соединении катушек эквивалентная индуктивность Lэ и эквивалентное индуктивное сопротивление XLэ будут равны: Lэ=L1+L2+… XLэ=XL1+XL2+… При параллельном соединении катушек: 1/Lэ=1/L1+1/L2+… 1/XLэ=1/XL1+1/XL2+… Контрольные вопросы
1. Какие виды сопротивления в цепях переменного тока Вы знаете? 2. Что значит активное сопротивление? 3. Что такое реактивное сопротивление? 4. Какие элементы цепи создают реактивное сопротивление? 5. Что такое активная мощность? 6. Дайте определение индуктивности. 7. Что происходит в первую четверть периода колебательного процесса обмена энергией между источником и индуктивностью? 8. Что происходит во вторую четверть периода колебательного процесса обмена энергией между источником и индуктивностью? 9. Дайте определение индуктивного сопротивления. 3.3. Конденсаторы. Ёмкость в цепи переменного тока
Конденсатор – устройство, способное накапливать электрические заряды. Простейший конденсатор представляет собой две металлические пластины (электроды), разделенные диэлектриком. Каждый конденсатор характеризуется номинальной емкостью и допустимым напряжением. Напряжение конденсатора указывают на корпусе, и превышать его нельзя. Конденсаторы различаются формой электродов (плоский), типом диэлектрика и ёмкостью (постоянной и переменной).
Условное обозначение конденсаторов на схемах С1 – конденсатор постоянной ёмкости С2 – конденсатор полярный С3 – построечный конденсатор С4 – конденсатор переменной ёмкости. Классификация конденсаторов по типу диэлектрика:
Дата добавления: 2015-05-06; Просмотров: 29482; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |