Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Как «запрягают» телескопы




ЧТО СЛЫШНО?

 

В космосе можно очень многое увидеть. Но еще больше, как ни странно, услышать…

 

 

 

Кто шумит? Радисты еще в начале нашего века обнаружили, что время от времени в их передачи вмешиваются некие посторонние сигналы, порой такой мощности, что напрочь забивают передатчик; из приемника невозможно услышать что-либо, кроме хрипов и шумов. Разобраться, кто хулиганит, в 1931 году поручили молодому американскому инженеру Карлу Янскому.

Заинтригованный Янский соорудил остронаправленную антенну и, поворачивая ее, вскоре понял, что в поисках «радиохулиганов» попал, что называется, пальцем в небо. В самом буквальном смысле — источник загадочных радиосигналов находился у него над головой. Им оказалось… Солнце. Ну а ночью подобные же сигналы исходили из протяженной области звездного неба, визуально совпадавшей с Млечным Путем.

Так экспериментально была открыта новая область астрономии, изучающая не оптическую, но радиочасть электромагнитного спектра.

В 1946 году исследователи обнаружили первый отдельный радиоисточник в созвездии Лебедя, а еще два года спустя — в созвездиях Девы и Центавра. Газеты запестрели заголовками: «Кто сигналит из иной галактики?», «Собратья по разуму шлют привет!» и даже: «Принята телеграмма из космоса. О ее содержании читайте в следующем номере…» На самом же деле, как вскоре выяснили ученые, эти радиоисточники имеют природное происхождение. Причем излучают как целые галактики, так и отдельные небесные тела. Скажем, квазарами в 60-х годах нашего века стали называть компактные источники космического радиоизлучения, наблюдаемые через обычные оптические телескопы в виде слабых голубых звездочек. В 1963 году американскому астроному М. Шмидту удалось расшифровать оптический спектр квазара ЗС 273, определив таким образом расстояние до него. Оно оказалось в 1300 раз больше дистанции до ближайшей к нам галактики — туманности Андромеды.

«Маяки» в космосе. В 1968 году английскими астрономами были обнаружены и первые пульсары. Наученные предыдущим опытом исследователи не стали вот так сразу приписывать им искусственное происхождение, хотя на сей раз, казалось, на то имелись все основания. Дело в том, что пульсары не зря получили свое название: радиоизлучение от них имеет тенденцию периодически меняться как по частоте, так и по интенсивности сигнала. Словом, налицо признаки вроде бы искусственной модуляции сигнала.

Тем не менее и этому феномену со временем было найдено вполне естественное объяснение. Ныне многие исследователи полагают, что звезда-пульсар быстро вращается вокруг собственной оси, а на ее поверхности есть некая область, испускающая излучение. Оно выбрасывается в пространство узким пучком и при вращении пульсара то попадает на поверхность нашей планеты, то уходит с нее. Вот и получается некое подобие импульсов…

Разочаровавшись в пульсарах, ученые стали искать во Вселенной другие «маяки». Сегодня на их роль претендуют цефеиды — небесные тела, которые, по словам одного из исследователей, «пульсируют, словно сердце». Причем каждое такое «сердце» раз в 50 больше нашего Солнца и в 100 раз массивней его…

Название «цефеиды» происходит от звезды Дельта Цефея — одной из наиболее типичных для данного класса небесных тел. Изменения интенсивности ее излучения носят правильный характер — они ритмично повторяются через каждые 5 суток и 8 часов.

«Уши» Вселенной. Радиоастрономия изменила даже сущность труда астронома. Она не требует безоблачного небосвода, неподвижного воздуха, упорного бдения по ночам. Нынче дело исследователя дать задание для подготовки радиотелескопа к работе и указать, в каком виде — на бумаге, магнитной ленте или в виде фотограмм — он хотел бы получить результаты. За остальным проследит автоматика.

Причем многие данные невозможно было бы получить при помощи оптической астрономии. Судите сами: в сантиметровом радиодиапазоне пространственное разрешение лучших современных радиотелескопов составляет порядка 0,0004 угловой секунды это как минимум на порядок лучше данных, получаемых в диапазоне видимого света.

И антенна современного радиотелескопа совсем не похожа на ту маленькую, переносную, с которой начинал работать Янский. Обычно это гигантская чаша диаметром несколько десятков, а то и сотен метров. А когда мне довелось побывать на одном из лучших радиотелескопов современности РАТАН-600, то первое впечатление было, что ты пришел на стадион. Такой же ровный зеленый газон, окаймленный по краям… Только не трибунами, а своеобразным «забором» из 895 плотно пригнанных друг к другу металлических щитов-экранов. Щиты эти, расположенные по кругу диаметром 600 м, и представляют собой круговое зеркало телескопа. Все вместе или по частям щиты могут передвигаться таким образом осуществляется наводка на те или иные объекты на небосводе.

Пойманное зеркалом-антенной радиоизлучение передается на вторичные зеркала, находящиеся внутри круга радиотелескопа. Эти зеркала вместе с кабинами, в которых расположена регистрирующая аппаратура, передвигаются по рельсовым путям, словно обычные трамваи. В центре радиотелескопного поля даже есть локомотивный круг, словно в настоящем депо.

Радиоастрономический телескоп Академии наук — именно так расшифровывается сокращение РАТАН — был сдан в эксплуатацию в 1977 году, и за два десятилетия с его помощью было сделано немало открытий. В частности, именно здесь, в окрестностях станицы Зеленчукской на Кавказе, где расположен уникальный инструмент, впервые услышали «радиоголоса» двух спутников Юпитера — Ио и Европы. Причем, по свидетельству члена-корреспондента РАН Ю. Н. Парийского, излучение Ио интересно тем, что не имеет аналогов в Солнечной системе. Ученые даже иногда шутят, что это подают голос юпитерианцы…

С помощью радиотелескопа был исследован также температурный градиент Луны. То есть, говоря проще, установлено распределение температур по мере погружения в недра естественного спутника нашей планеты. Проведено также комплексное исследование гигантского пылевого облака вблизи центра галактики Стрелец В2, построены кинематическая и эволюционные модели этого небесного объекта…

За прошедшие годы радиотелескоп неоднократно модернизировался. Экранирующая сетка и малые алюминиевые экраны, поставленные в щелях между элементами, усовершенствованный первичный излучатель позволили в значительной степени обособиться, как говорят специалисты, отстроиться от «наводок» промышленных шумов, а использование криогенных температур для работы радиометра позволило еще больше повысить чувствительность измерительного тракта. Введение же в строй автоматизированного комплекса, обеспечивающего точное управление системами РАТАНа, позволило использовать уникальный инструмент и в режиме радиоинтерферометрии.

Последнее, видимо, требует особого пояснения.

Телескопы «в упряжке». Как и в обычном, оптическом телескопе, чувствительность радиотелескопа во многом зависит от размеров его зеркала-антенны. Однако увеличивать беспредельно размеры антенны не удается. Стоимость такого сооружения, его вес увеличиваются в кубической зависимости от линейных размеров. Это приводит к тому, что в настоящее время нерентабельно увеличивать размеры антенны более 1 км.

Невозможно также и абсолютно уничтожить, подавить все шумы и паразитные помехи.

Таким образом, как будто наметился предел на пути совершенствования астрономических инструментов. И вот в поисках выхода специалисты решили использовать мощь нескольких инструментов для единой цели. Образно говоря, не столь давно, например, радиоастрономам нашей страны, ФРГ, США, Швеции и Австралии удалось собрать установку, антенна которой была диаметром… в земной шар!

Вся хитрость — в оригинальном научном подходе, который теперь используют специалисты. Представьте себе, что, скажем, у нас на Кавказе и где-то в Калифорнии два радиотелескопа нацеливаются на один и тот же объект на небосводе. На обоих телескопах принятые сигналы записываются на магнитную ленту вместе с отметками точного времени, для этого используются атомные часы.

Записанная информация переправляется в вычислительный центр, где компьютеры и сводят ее воедино, создавая обобщенную картину. Понятное дело, что изображение тем подробнее, чем больше радиотелескопов использовано для обследования данного объекта.

В особенности удобны такие «упряжки» для обнаружения и исследования источников со сложной пространственной структурой — например, зарождающихся планетных систем.

Наблюдения за ними ведут так. Во многих областях на небе видны гигантские газопылевые облака. Масса их — от 100 до 1000 масс Солнца. Доказано, что облака эти находятся зачастую в состоянии быстрого хаотического движения, причем температура внутри может колебаться от нескольких десятков до 1000 градусов по шкале Кельвина. Такая структура весьма неустойчива и может сжиматься под действием собственной тяжести или каких-то внешних причин — например, вспышки сверхновой звезды. При этом образуются первичные сгущения, которые затем, словно снежные комья, начинают собирать на себя все большую дополнительную массу. Облако распадается на несколько частей, каждое из которых продолжает существовать уже самостоятельно. Постепенно из них образуются отдельные звезды со своими планетными системами.

Такова общая схема, обрисованная теоретиками на основании известных законов физики. Однако в природе длительное время никто ничего подобного не наблюдал. Лишь с появлением радиотелескопов, работающих в общей упряжке — радиоинтерферометров, — удалось пронаблюдать на практике многие этапы перестройки туманности W52. «По-видимому, радиоинтерферометру удалось нащупать отдельные протозвезды, а может, даже планетные системы, подобные Солнечной, в разгаре их строительства», полагают астрономы.

На старте — мегателескопы. Оглушая зевак, трехступенчатая ракета М-5 свечой взмыла в небо над южнояпонским островом Кюсю. Так 12 февраля 1997 года был выведен на эллипсоидную орбиту еще один необычный радиотелескоп — прибор, способный изменить наши представления о Вселенной. Ведь в глубины космоса он заглядывает дальше, чем любой другой аппарат.

Как же удалось создать «телескоп всех времен и народов»? Помог тот же трюк под названием «интерферометрия». Основной частью прибора стало антенное зеркало диаметром 8,4 м, изготовленное из кевларовых волокон. Его-то и доставили на околоземную орбиту. Зеркало это связано с двумя десятками других телескопов, раскиданных по всему свету. Все они одновременно нацеливаются на один и тот же объект и принимают из космоса одинаковые сигналы.

«На центральной станции все эти радиоволновые сигналы накладываются друг на друга, и тут возникает такое явление, как интерференция, — поясняет профессор Оскар фон дер Люэ из Фрайбурга, ФРГ. Попробуйте бросить два камня в воду — от них разойдутся волны. Когда встречаются волны с одинаковой фазой колебаний, их амплитуда увеличивается картина становится отчетливее. В нашем случае чем дальше друг от друга расположатся отдельные телескопы, тем четче получится картинка. Особую роль играет упомянутое нами антенное зеркало, что оказалось на орбите Земли. Именно оно обеспечило невероятную разрешающую способность. Если бы мы захотели получить ту же картинку с помощью обычного телескопа, нам пришлось бы соорудить зеркало диаметром 20 000 км! Конечно, сей строительный подвиг невозможен».

«Первый космический интерферометр именуется VSOP — „Very Long Baseline Interferometry Space Observation Programme“. Теперь мы увидим вещи, которые вообще не заметить с Земли», — прокомментировал это событие Антон Цензус, астроном из Национальной американской радиоастрономической обсерватории, штат Виргиния. Отметим еще одну важную особенность системы: все телескопы, составляющие ее, постоянно перемещаются относительно изучаемого объекта (например, источника радиоизлучения): непрерывно движутся радиотелескопы, расположенные на Земле, поскольку планета наша вращается вокруг собственной оси; движется и инструмент, выведенный японцами на орбиту. Таким образом, приборы все время вглядываются в один и тот же объект с разных точек наблюдения, поэтому появляется возможность получать синтезированное изображение высокого качества, дающее представление о пространственной форме объекта наблюдения.

Особенно перспективна эта тактика при исследовании черных дыр. Еще в 1995 году крупнейший в то время интерферометр — он представлял собой сеть радиотелескопов, охватывавшую всю территорию планеты, — добыл самое поразительное на сегодняшний день свидетельство существования черной дыры. В центре галактики NGC4258, расположенной поблизости от Земли, удалось заметить вращающееся газовое кольцо. Его приводила в движение невероятная гравитационная сила — как будто поблизости находилось 36 млн Солнц.

Астрономы предполагают, что черные дыры, прячущиеся в квазарах, в тысячи раз массивнее описанного выше сгустка. О присутствии этих космических «пылесосов» можно догадаться по громадным лучам материи, которые они выбрасывают в космос на тысячи световых лет от себя, — по-видимому, причиной тут являются гравитационные эффекты.

«Разрешающая способность просто фантастическая; никакая другая астрономическая техника этого не достигнет», — уверяет доктор Вольфганг Райх, директор 100-метрового радиотелескопа в Эффельсберге под Бонном. Это крупнейшее в мире подвижное антенное зеркало также участвует в международном проекте. Сигналы, принимаемые новым мегателескопом, записываются на магнитную пленку, поэтому на работу системы никак не влияют расстояния ит значит, мы можем подключать все новые антенны. Сейчас российские ученые при поддержке НАСА работают над проектом космического телескопа «Радиоастрон» — он будет кружить уже в 80 тыс. км от Земли. Подобный прибор — о нем давно уже мечтают астрономы — заметит раз в 10 больше, чем крупнейший наземный радиоинтерферометр.

У всех наземных радиотелескопов, как и у оптических приборов, есть один существенный недостаток: разглядеть отдаленные объекты им мешает земная атмосфера — она искажает и поглощает и без того слабое излучение. Потому-то, говорят ученые, надо размещать интерферометры в космосе. Сейчас руководители Европейского космического агентства ЕКА работают над проектом, который будет осуществлен еще до 2010 года. По сравнению с новым интерферометром — имя ему «Дарвин» — нынешний орбитальный телескоп «Хаббл» будет выглядеть подслеповатым старцем.

Итак, в космос взмоет целая эскадрилья телескопов — 6-метровых зеркал. Они расположатся на небольшом расстоянии — до 70 м — от центральной приемной станции. Эти приборы высмотрят самые крохотные объекты — в 1000 раз меньшие, чем способен увидеть телескоп Хаббла. «Отсюда, из космоса, мы впервые, может быть, разглядим планеты, обращающиеся вокруг отдаленных звезд. Возможно даже, обнаружим следы жизни на них», — говорит Робин Лоране из исследовательского центра ЕКА в Нордвике, Нидерланды.

Только оттуда, из космоса, можно зафиксировать слабое инфракрасное излучение, исходящее от далеких планет. В видимой части спектра обнаружить их не удастся — слишком ярко пылает звезда, затмевая все окрестные объекты, — но вот в инфракрасном диапазоне можно заметить тепловые волны, истекающие от планеты. «Космический интерферометр сумеет даже выполнить спектральный анализ ее света, — продолжает Лоране. — Тогда мы можем судить о том, какие химические элементы преобладают на этой планете».

Если, допустим, в этом спектре будет обнаружен озон, мы совершим очень важное открытие. Ведь наличие прослойки озона — одной из модификаций кислорода — говорит о том, что в атмосфере непременно присутствует и обычный кислород.

Впрочем, космическое «радиошоу» принесет ученым не только сенсационные открытия, но и целый ряд новых проблем. Так, по финансовым соображениям, выводить на околоземную орбиту лучше телескоп с небольшим диаметром зеркала. Далее, телескопы постоянно сносит в сторону солнечным ветром. Поэтому, чтобы «Дарвин» нормально работал, надо постоянно юстировать, т. е. регулировать, детекторы зеркала и приемную станцию. «Речь идет буквально о считанных долях миллиметра», — говорит Оскар фон дер Люэ. Однако технологию юстировки еще только предстоит разработать.

Параллельно ЕКА занимается и другим проектом. Этот космический интерферометр предназначен для измерения расстояний, разделяющих звезды. Благодаря скрупулезной статистике мы заново — и более точно — определим плотность и протяженность Вселенной. Быть может, проанализировав эти цифры, мы поймем, будет ли Вселенная расширяться бесконечно, или однажды она начнет сжиматься. А это, в свою очередь, один из важнейших вопросов космологии о судьбе Вселенной.

Одновременно с европейцами над проектами радиоинтерферометров нового поколения работают и за океаном, в НАСА. На 2004 год запланирована американская «Space Interferometry Mission» («Космическая интероферометрическая миссия»). Система из семи связанных друг с другом телескопов также займется поиском планет у чужих солнц. Если опыт окажется удачным, в космос отправится «Planetfinder» («Планетоискатель») — прибор, специально разрабатываемый для этих целей.

Понятно, что эти эксперименты стоят очень дорого. Поэтому в НАСА подумывают, на чем можно сэкономить. Хорошо бы, например, заменить слишком дорогой телескоп Хаббла (диаметр зеркала — 2,4 м) аналогичным — но более дешевым и мощным — прибором. На изготовление первого космического инструмента ушло 1,5 млрд долларов. В ближайшие годы — вплоть до 2005 года, когда планируется отключить этот телескоп, — на его обслуживание придется выложить еще 2,1 млрд долларов. Причем сумма не включает затрат на полеты космического корабля, а ведь, если потребуется, придется еще запускать и «челноки», чтобы устранить какие-то неисправности.

Новый космический телескоп будет оборудован более мощным зеркалом (планируемый диаметр — 68 м). Обойдется его изготовление всего в 500 млн долларов; расходы на обслуживание составят каких-нибудь 400 млн в течение десятилетия. Весить аппарат будет в 5 раз меньше, чем его предшественник, всего 2,5 т. «Next Generation Space Telescope» — «космический телескоп следующего поколения» — можно доставить в космос с помощью непилотируемой ракеты, что дешевле, чем запускать космический «челнок».

«Хаббл-II» станет крупнейшим космическим телескопом, когда-либо обозревавшим просторы Вселенной. Он примется наблюдать в первую очередь за рождением молодых галактик на окраине мирозда ния. Поскольку их свет доходит до нас лишь в виде слабого инфракрасного излучения, телескоп оборудован специальной инфракрасной камерой, охлажденной до —240С. Чтобы защитить ее от жарких солнечных лучей, предусмотрен огромный экран размером в теннисный корт.

Если лунатик уронит карандаш… Впрочем, не только в космосе происходят сегодня знаменательные для астрономов события, и не только радиотелескопы переживают сегодня свое второе рождение.

«По-моему, космонавт что-то уронил», — скажет астроном, оторвавшись от своего инструмента, с помощью которого он только что рассматривал поверхность Луны. Возможно ли такое на самом деле? «Да, мы вполне сможем наблюдать за рассеянными инопланетянами в самом скором будущем, — полагает Джон Болдлин и его коллеги по обсерватории Кембриджского университета в Англии. — Дело в том, что наблюдательная астрономия вступает в новую эру — оптические телескопы-интерферометры отныне будут успешно соперничать с радиотелескопами».

Недавно те же кембриджские астрономы опубликовали снимки двойной звезды Катеоль — одной из самых ярких в Северном полушарии. Она находится в созвездии Возничего на расстоянии 40 световых лет от Земли. «Двойняшек» разделяет между собой более 1,5 млн км — расстояние по земным меркам весьма значительное. Однако даже для космического телескопа «Хаббл» или для самого мощного на нашей планете Кек-телескопа на Гавайях это расстояние чересчур мало, чтобы небесный объект можно было наблюдать в виде двух небесных тел. А вот скромный кембриджский телескоп сделал это без труда, а ведь в Англии нет даже приличного холма, на который можно было бы поставить телескоп.

Таким «чудом» английские астрономы обязаны опять-таки интерферометрии. Их телескоп называется КОАСТ — название составлено из первых букв английских слов, в переводе означающих «Кембриджский оптический щелевой синтезирующий телескоп». Состоит он, по существу, из трех телескопов, взаимосвязанных между собой в систему, где световая волна расщепляется на два луча; они потом накладываются друг на друга, и по их интерференционной картине ученые судят об особенностях испустившего их источника света.

Достижение кембриджских астрономов оказалось сенсацией даже для тех, кто работает непосредственно в этой узкой области практической астрономии. Однако Николас Эллиат из обсерватории Лоуэлл, принадлежащей военно-морскому флоту США, берет на себя смелость утверждать, что их новый оптический интерферометр, вступающий в строй в конце этого года, по качеству изображения превзойдет кембриджский КОАСТ.

«Оптическая интерферометрия сулит невиданный квантовый скачок, — говорит Эллиат. — Ныне этот раздел науки находится на той же стадии, на какой лет 30 тому назад находилась радиоастрономия».

Интерференционные картины, получаемые от радиотелескопов и от оптических приборов, в сущности, идентичны. Если, конечно, не считать того, что длина радиоволн колеблется между 1 м и 1 км, а длина оптического излучения измеряется долями микрона.

Турбулентность воздуха, тепло, вибрация — все это уже не может помешать интерферометрам создавать безупречное изображение.

В течение многих лет интерферометрия использовалась для формирования изображения на основе радиосигналов, получаемых от радиотелескопов. Самый большой из них, который так и называется «Очень большая антенна», расположен в штате Нью-Мексико и представляет собой 27 больших тарелкообразных антенн, занимающих солидное пространство — район диаметром 27 км.

Оптическая интерферометрия, имеющая дело с волнами ничтожной длины, не нуждается в гигантских территориях. Здесь главная задача — избежать ошибок, которые могут сказаться на конечном результате. Поэтому ныне для таких измерений и вообще оптических наблюдений все чаще прибегают к помощи адаптивной оптики, которая автоматически корректирует изображение, устраняя искажения, привносимые турбулентностью и вибрацией. Благодаря такой оптике и большие телескопы могут теперь работать подобно интерферометрам. Так что КОАСТ — лишь первая ласточка.

Совсем недавно начали работу «в упряжке» самые большие телескопы на Гавайях «Кек-1» и «Кек-2» с 10-метровыми зеркалами. Полным ходом идут также работы на Южной обсерватории Европейского астрономического союза. Она расположена не в самой Европе, а в Южном полушарии, точнее, в Чилийских Андах. Здесь устанавливают 4 зеркала диаметром 8,2 м каждое. Вместе их разрешающая способность равна зеркалу с эффективным диаметром 16 м. Синтезированное изображение будет получено благодаря компьютерной обработке. Инструмент позволит разглядеть светляка на расстоянии 10 тыс. км или объект размером менее метра на поверхности Селены. Вот тогда астрономы и смогут заметить, что астронавт обронил карандаш…

 

 




Поделиться с друзьями:


Дата добавления: 2015-05-06; Просмотров: 383; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.