Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Идея вероятностной Вселенной 4 страница




В этом процессе сбрасывания старой и образования новой оболочки принимает участие нервная система. Хотя имеются некоторые факты, свидетельствующие, что какая-то память сохраняется при переходе от личинки к имаго, эта память не может быть очень экстенсивной. Физиологическими условиями памяти и, следовательно, научения, по-видимому, является некоторое постоянство организации, которое позволяет удерживать производимые внешними чувственными впечатлениями изменения в качестве более или менее постоянных изменений структуры или функции. Метаморфоза представляет собой слишком радикальное [с.65] изменение, чтобы могли сохраниться многие из продолжительных записей этих изменений. Действительно, трудно представить себе сколько-нибудь точную память, способную пережить этот процесс радикальных внутренних преобразований.

Насекомое есть другое ограничение, зависящее от его схемы дыхания и кровообращения. Сердце насекомого имеет очень плохую и слабую трубчатую структуру: оно соединяется не с ясно очерченными кровеносными сосудами, а с неопределенными полостями или синусами, передающими кровь тканям. Кровь насекомого лишена эритроцитов и содержит кровяные пигменты в растворе. Этот способ передачи кислорода является определенно более низким по сравнению с передачей кислорода при помощи эритроцитов.

Кроме того, у насекомого способ питания тканей кислородом представляет собой не больше, как локальное использование крови. Тело насекомого содержит систему ветвящихся трубок (трахеи), несущих воздух непосредственно извне к тканям для обогащения их кислородом. Эти трахеи предохраняются от разрушения спиральными волокнами хитина и, таким образом, пассивно открыты, однако нигде нет свидетельств активной и эффективной системы нагнетания воздуха. Дыхание осуществляется только путем диффузии.

Следует отметить, что те же самые трахеи посредством диффузии вводят внутрь организма свежий воздух и выводят наружу использованный, насыщенный углекислым газом воздух. В диффузионном механизме время диффузии зависит не от длины трубки, а от квадрата се длины. Таким образом, эффективность этой системы ” общем имеет тенденцию быстро падать с увеличением размеров насекомого и падает ниже точки выживания у организмов, имеющих значительные размеры. Таким образом, насекомое по своей структуре не только неспособно на первоклассную память, но из-за своей структуры оно не может достичь эффективных размеров.

Чтобы понять значение этого ограничения в размерах, сравним два здания: коттедж и небоскреб. Вентиляция коттеджа вполне обеспечивается циркуляцией воздуха через оконные рамы, не говоря уж о тяге в трубе. Здесь не нужна никакая специальная вентиляционная система. С другой стороны, в небоскребе, где комнаты находятся внутри комнат, остановка системы принудительной вентиляции [с.66] через несколько минут вызовет невыносимое загрязнение воздуха в рабочих помещениях. Диффузия и даже конвекция уже недостаточны, чтобы провентилировать такое помещение.

Абсолютные максимальные размеры насекомых меньше размеров, которых могут достичь позвоночные. С другой стороны, первичных элементов, из которых состоит насекомое, у него не всегда меньше, чем у человека или даже у кита. Его нервная система имеет также небольшие размеры, и все же она состоит из нейронов, не намного меньше, чем нейроны человеческого мозга, хотя их в нервной системе насекомого гораздо меньше и их структура гораздо менее сложна, чем у человека. Что касается интеллекта, то следует ожидать, что здесь имеют значение не только относительные размеры нервной системы, но и в большой степени ее абсолютные размеры. В редуцированной структуре насекомого просто нет места для нервной системы большой сложности, а также для емкой памяти.

Ввиду невозможности емкой памяти, а также ввиду того, что ранняя стадия жизни насекомого, например муравья, проходит в форме, изолированной от фазы зрелости промежуточной катастрофой метаморфоза, для муравья нет возможности познать многое. Если к этому добавить, что его поведение на стадии зрелости должно быть с самого начала, по существу, совершенным, то станет ясно, что получаемые нервной системой насекомого предписания должны быть во многом результатом его формирования, а не какого-либо его личного опыта. Таким образом, насекомое весьма похоже на те типы счетных машин, у которых предписания заранее изложены на “лентах” и которые почти не имеют никакого механизма обратной связи, помогающего им действовать в неопределенном будущем. Поведение муравья является гораздо больше делом инстинкта, чем разума. Узкий камзол физического развития насекомого прямо обусловливает узкий камзол духовной деятельности, регулирующей модели его поведения.

Здесь читатель мог бы спросить: “Хорошо, уже известно, что муравей как индивидуум не очень-то разумен, так к чему же все эти объяснения, почему он не может быть разумен?” На это ответим, что кибернетика полагает, что строение машины или организма является показателем их способности выполнить задачу. Тот факт, что механическая ригидность насекомого ограничивает его интеллект, в то время как механическая гибкость человеческого [с.67] существа обеспечивает его почти безграничное интеллектуальное развитие, хорошо согласуется с точкой зрения автора данной книги. Теоретически если бы мы могли создать машину, механическая структура которой воспроизводила бы человеческую физиологию, то мы могли бы иметь машину, “интеллектуальные способности” которой воспроизводили бы умственные способности людей.

В вопросе ригидности поведения величайшим контрастом поведению муравья является не просто поведение млекопитающего вообще, но в особенности человека. Часто отмечалось, что человек представляет собой неотеническую форму, то есть, если мы сравним человека с его ближайшими родственниками – с человекообразными обезьянами, мы найдем, что взрослый человек своими волосами, головой, фигурой, пропорциями тела, структурой кости, мускулами и тому подобным более похож на новорожденную, чем на взрослую обезьяну. Среди животных человек является как бы Питером Пэном, который никогда не становится взрослым.

Эта незрелость анатомической структуры объясняется длительным периодом детства человека. Физиологически человек не достигает половой зрелости до тех пор, пока он не прожил пятую часть своего обычного срока жизни. Сравним это с соотношением периодов жизни мыши, которая живет три года, а начинает размножаться к концу третьего месяца. Это – отношение двенадцати к одному. Соотношение периодов жизни мыши является намного более типичным для огромного большинства млекопитающих, чем соотношение периодов жизни человека.

Половая зрелость у большинства млекопитающих означает либо конец периода родительской опеки над ними, либо последняя наступает значительно позже этого периода. В нашем обществе человек считается незрелым до двадцати одного года, а современный период образования для приобретения более сложных профессий продолжается примерно до тридцати лет, фактически – после периода наибольшего физического расцвета. Человек, таким образом, проводит примерно сорок процентов своей нормальной жизни в качестве ученика, опять-таки по причинам, связанным с его физической структурой. Человеческому обществу присуще столь же совершенно естественно основываться на научении, как обществу муравьев – на врожденном образце. [с.68]

Подобно всем другим организмам, человек живет в вероятностной Вселенной, однако превосходство человека над остальной природой состоит в том, что он физиологически и, следовательно, интеллектуально лучше вооружен для приспособления к радикальным изменениям окружающей его среды. Человеческий род силен лишь постольку, поскольку он использует преимущества врожденных приспособительных, познавательных способностей, обусловливаемых его физиологической структурой.

Мы уже указывали, что для эффективного поведения необходимо получать информацию посредством какого-нибудь процесса обратной связи, сообщающего о достижении цели. В простейших обратных связях в грубой форме фиксируются успех или неудача в выполнении задачи, как, например, действительно ли нам удалось схватить предмет, который мы старались поднять, или находится ли авангард армии в назначенном месте в назначенное время. Однако существует много других форм обратной связи, имеющих более сложную природу.

Нам часто бывает необходимо знать, оказалась ли успешной вся линия поведения, так сказать его стратегия. Животное, которое мы учим выбираться из лабиринта, для того чтобы найти пищу или избежать ударов от электрических разрядов, должно обладать способностью регистрировать, был ли успешен в целом общий план прохождения через лабиринт, и изменять этот план, чтобы умело проходить через лабиринт. Эта форма познания почти несомненно является обратной связью, однако она представляет собой обратную связь на высшем уровне – обратную связь линий поведения, а непростых действий. Она отличается от более элементарных обратных связей своим “логическим типом”, как сказал бы Рассел.

Этот образец поведения можно обнаружить также и в машинах. Недавнее нововведение в технике телефонной связи позволяет провести интересную аналогию между механизмами и способностью человека приспосабливаться к окружающим его условиям. На всех телефонных линиях автоматическое переключение почти уже закрепило свою победу над ручным переключением, и может показаться, что существующие формы автоматического переключения представляют собой почти совершенный процесс. Тем не менее если немного подумать, то окажется, что современный процесс вызова абонента является очень расточительным [с.69] для оборудования. Число людей, с которыми я фактически хочу разговаривать по телефону, ограниченно и в значительной степени сегодня представляет собой ту же самую ограниченную группу, телефонная связь с которыми имелась и вчера, – и так день за днем, неделя за неделей. Я пользуюсь телефонным оборудованием, находящимся в моем распоряжении, в основном для установления связи с членами этой группы. Теперь в соответствии с современной техникой переключения вообще процесс вызова абонентов, которым я звоню четыре или пять раз в день, никак не отличается от процесса вызова тех абонентов, с которыми мы, возможно, никогда не будем иметь разговора. С точки зрения равномерности нагрузки телефонной сети мы используем оборудование слишком мало в случае частых вызовов и слишком много в случае редких вызовов. Эта ситуация напоминает мне стихотворение Оливера Уэндела Холмса об “одноконном фаэтоне”. Как вы помните, после столетней службы этого древнего экипажа обнаружилось, что он был столь тщательно сконструирован, что ни колеса, ни верх экипажа, ни оглобли, ни сиденье не содержали какой-либо части, в которой проявился бы неэкономичный излишек степени износа по сравнению с, любой другой частью. Фактически “одноконный фаэтон” представляет вершину техники, а не просто юмористическую фантазию. Если бы обода колес просуществовали чуть дольше, чем спицы, или крылья – чуть дольше, чем оглобли, то эти неизносившиеся части означали бы неиспользование известных экономических ценностей. Эти ценности можно было бы либо отбросить, не причиняя ущерба продолжительности срока службы коляски в целом, или их можно было бы в равной степени перераспределить по всей коляске, чтобы продлить срок ее службы. В самом деле, любое сооружение иной природы, чем “одноконный фаэтон”, сконструировано расточительно.

Это означает, что с точки зрения наибольшей экономии в обслуживании абонентов нежелательно, чтобы процесс моего соединения с абонентом А, которому я звоню трижды в день, и абонентом В, который для меня представляет только запись в телефонном справочнике, было бы фактом одинакового порядка. Если бы мне были предоставлены несколько более прямые средства соединения с абонентом А, тогда удвоение времени, теряемого в ожидании вызова абонента Б, было бы вполне компенсировано. [с.70] Если, следовательно, было бы возможно без чрезмерных затрат изобрести аппарат, который будет регистрировать мои прошлые вызовы и распределять степень обслуживания в зависимости от частоты предыдущего использования мною телефонных линий, то я получил бы лучшее обслуживание, или менее дорогостоящее, или то и другое.

“Philipslamp company” в Голландии удалось сделать это. Качество се обслуживания было улучшено посредством обратной связи так называемого “высшего логического типа” Рассела. Эта система допускает большее многообразие, большую применимость и работает более эффективно, чем обычное оборудование с энтропической тенденцией более вероятного преодолевать менее вероятное.

Повторяю, обратная связь есть метод управления системой путем включения в нее результатов предшествующего выполнения ею своих задач. Если эти результаты используются просто как цифровые данные для расчета системы и ее регулирования, то мы имеем простую обратную связь, осуществляемую инженером-диспетчером. Однако если информация, поступающая как результат выполнения или невыполнения машиной своих задач, способна изменять общий метод и форму выполнения задач, то мы получаем процесс, который вполне можно назвать процессом научения.

Другой пример процесса научения связан с проблемой конструирования машин, определяющих упреждение цели. В начале второй мировой войны сравнительная неэффективность огня зенитной артиллерии сделала необходимым изобретение приборов, которые следили бы за положением самолета, определяли расстояние до него, вычисляли продолжительность времени, в течение которого артиллерийский снаряд достигнет его, и указывали место, где он будет находиться к концу этого времени. Если бы самолет обладал способностью предпринимать совершенно произвольные действия уклонения, то никакая степень искусства не позволила бы нам воспроизвести пока еще не известное движение самолета в течение отрезка времени между произведением выстрела и приблизительным достижением своей цели артиллерийским снарядом. Однако от многих обстоятельств зависит, что летчик либо не предпринимает, либо не может предпринимать произвольных действий уклонения. Летчик ограничен тем, что если он быстро повернет самолет, то вследствие действия центробежной силы он [с.71] потеряет сознание, а также и тем, что механизм управления самолетом и пройденный летчиком курс обучения практически навязывают ему некоторые постоянные навыки управления самолетом, которые проявятся также и в его действиях уклонения. Эти закономерности не являются абсолютными, а представляют собой скорее статистические предпочтения, проявляющиеся большее количество раз. Они могут быть различными у различных летчиков и, конечно, они будут различными у разных самолетов. Вспомним, что в преследовании такой быстро движущейся цели, как самолет, у вычислителя нет времени прибегнуть к помощи своих приборов и определить, где будет находиться самолет. Вся система расчета должна быть вмонтирована в самое управляющую орудием систему. В эту систему расчета должны быть включены данные, зависящие от наших прошлых статистических экспериментов с самолетами данного типа в разнообразных летных условиях. На современной ступени корректирования огня зенитной артиллерии применяется аппарат, который использует либо постоянные данные этого рода, либо наборы ограниченного количества таких постоянных данных. Правильно выбранный набор этих данных можно подключить посредством сознательного действия наводчика орудия.

Однако проблему управления огнем зенитной артиллерии можно также разрешить путем автоматизации. Сама задача определения летной статистики самолета на основе действительного наблюдения его полета, а затем преобразования этих данных в правила управления орудием представляет собой как конкретную, так и математическую задачу. По сравнению с действительным преследованием самолета в соответствии с данными правилами этот процесс является сравнительно медленным действием и предполагает серьезную предварительную работу, проделанную наблюдением предшествовавшего полета самолета. Тем не менее возможно механизировать его продолжительное действие. Мы, следовательно, можем сконструировать зенитное орудие, которое само накапливает статистические данные о движении летящей цели, затем перерабатывает эти сведения, передавая их в систему управления, и, наконец, применяет эту систему управления как быстродействующий способ регулирования своего положения по отношению к зафиксированному местоположению и движению самолета. [с.72]

Насколько мне известно, такого орудия еще нет, однако эта проблема попадает в рамки исследования, которое мы ведем с целью использования этой проблемы для других задач теории упреждений. Корректировка общего плана наводки и огня орудия в соответствии с особой системой осуществляемых летящей целью движений, по существу, является актом научения. Это является изменением в программной катушке вычислительного механизма орудия – изменением не столько цифровых данных, сколько процесса их истолкования. Этот процесс представляет собой фактически очень общий вид обратной связи, воздействующей на весь метод поведения прибора.

Только что рассмотренный здесь усовершенствованный процесс научения пока еще ограничен механическими условиями системы, в которой он совершается, и, очевидно, не соответствует нормальному процессу научения у человека. Однако, исходя из процесса научения у человека, можно вывести совершенно разные методы, какими можно механизировать процесс научения сложного вида. Эти указания даются соответственно локковской теории ассоциации и павловской теории условного рефлекса. Однако, прежде чем рассматривать их, мне хотелось бы сделать некоторые общие замечания, заранее ответив на определенную критику того тезиса, который я выдвину ниже.

Разрешите мне изложить основу, на которой возможно развить теорию научения. Несравнимо большая часть работы неврофизиолога посвящалась исследованию передачи импульсов нервными волокнами, или нейронами, и этот процесс изображается как явление “все или ничего”. То есть если сила возбуждения достигает той точки или порога, с которого она вообще будет распространяться по нервному волокну и не угасает на относительно коротком расстоянии, то оказываемое этим возбуждением воздействие на сравнительно отдаленную точку на нервном волокне, по существу, будет независимым от его первоначальной силы.

Эти нервные импульсы распространяются от нейрона к нейрону через точки контакта между ними, называемые синапсами, где один входящий нейрон может соединяться со многими выходящими нейронами, а один выходящий нейрон – со многими входящими нейронами. В этих синапсах посылаемый одним входящим нервным волокном импульс часто является недостаточным для получения эффективного выходящего импульса. Вообще если импульсы, [с.73] передаваемые входящими синапсическими сочленениями на данный выходящий нейтрон, слишком немногочисленны, то выходящий нейрон не будет реагировать. Говоря “слишком немногочисленны”, я не обязательно имею в виду то, что все входящие нейроны действуют одинаково, или даже то, что относительно любого ряда входящих активных синапсических сочленений можно раз и навсегда решить, будут ли возбуждаться выходящие нейроны. Я также не намерен игнорировать то обстоятельство, что некоторые входящие нейроны, вместо того чтобы стремиться произвести возбуждение в связанных с ними выходящих нейронах, могут стремиться помешать этим нейронам принять новое возбуждение.

Как бы то ни было, несмотря на то, что прохождение импульсов по нейрону можно описать довольно простым способом как явление “все или ничего”, передача импульса через слой синапсических сочленений обусловливается сложной моделью реагирования, когда некоторые комбинации входящих нейронов, возбуждающихся в течение известного ограниченного времени, будут обусловливать дальнейшее движение сигналов, хотя некоторые другие их комбинации не будут обусловливать это движение. Эти комбинации не представляют собой нечто установленное раз и навсегда, они также не зависят только исключительно от прошлых сигналов, поступивших в синапсичсский слой. Известно, что они изменяются в зависимости от температуры и могут также измениться в зависимости от многих других факторов.

Такое представление о нервной системе соответствует теории машин, состоящих из ряда переключающих устройств, где включение последующего переключателя зависит от действия определенных комбинаций соединенных с ним предшествовавших переключателей, включающихся в то же самое время. Эта действующая по принципу “все или ничего” машина называется цифровой машиной. Она имеет большие преимущества в решении большинства различных проблем связи и управления. В частности, решения только между “да” и “нет” позволяют ей накапливать информацию таким путем, чтобы дать нам возможность распознавать небольшие различия в очень больших числах.

Кроме этих машин, работающих по принципу “да” – “нет”, существуют другие счетные и контрольные машины, которые скорее измеряют, чем считают. Эти машины [с.74] называются аналоговыми машинами, ибо их действие основано на аналоговых связях между измеряемыми и цифровыми величинами, предположительно их выражающими. В противоположность, например, настольному арифмометру, оперирующему с цифрами, примером такой аналоговой машины является логарифмическая линейка. Те, кто пользовался логарифмической линейкой, знают, что шкала, на которой нанесены деления, и острота нашего зрения ставят жесткие пределы точности чтения линейки. Эти пределы не так легко расширить, как может показаться, сделав размеры линейки большими. По сравнению с логарифмической линейкой в один фут логарифмическая линейка в десять футов даст решение более точное лишь на один десятичный разряд, а для обеспечения этой точности не только необходимо на каждый фут этой линейки в десять футов нанести деления с такой же тщательностью, как и на линейке в один фут, но и ориентирование этих последовательных футов должно соответствовать степени точности, рассчитанной для каждой логарифмической линейки длиной в один фут. Более того, проблемы обеспечения жесткости в линейке большего размера гораздо более сложны, чем в случае линеек меньшего размера, и это ограничивает увеличение точности, получаемой в результате увеличения размера линейки. Иначе говоря, в противоположность счетным устройствам степень точности измеряющих устройств на практике очень сильно ограничена. Прибавьте это к пристрастию физиолога к принципу “все или ничего” – и вы поймете, почему большая часть работы, проделанной по созданию механических подобий мозга, была посвящена машинам, действующим в большей или меньшей степени на цифровой основе.

Однако если мы будем слишком сильно настаивать, что мозг представляет собой цифровую машину в человеческом образе, то мы станем предметом весьма справедливой критики, идущей частично со стороны физиологов и частично со стороны до некоторой степени противоположного лагеря тех психологов, которые предпочитают не прибегать к сравнениям с машинами. Я говорил, что в цифровую машину вводится программная катушка, определяющая последовательность выполняемых операций, и что изменение в этой программной катушке, происшедшее на основе предыдущего опыта, соответствует процессу научения. В мозгу прямую аналогию программной катушке составляет [с.75] определенность синапсических порогов, определенность комбинации входящих нейронов, возбуждающих соединенный с ними выходящий нейрон. Мы уже видели, что эти пороги различаются в зависимости от температуры, и у нас нет оснований полагать, что эти пороги не могут изменяться в зависимости от химического состава крови и от многих других явлений, которые сами первоначально не имеют природы принципа “все или ничего”. Поэтому при рассмотрении проблемы научения необходима чрезвычайная осторожность в применении принципа “все или ничего” в теории нервной системы без серьезной теоретической критики этого принципа и без специфических экспериментальных свидетельств для подкрепления нашего предположения.

Часто говорят, что теории научения, которая подходила бы для машин, не существует. Могут также сказать, что на современной ступени нашего познания любая теория научения, которую я могу предложить, будет преждевременной и, вероятно, не будет соответствовать действительной картине функционирования нервной системы. Я хотел бы выбрать среднюю линию между этими двумя критическими высказываниями. С одной стороны, я хотел бы дать метод конструирования научающих машин – метод, который не только даст мне возможность создавать некоторые специальные машины этого типа, но и даст мне знание об общих технических приемах для конструирования очень большого класса подобных машин. Только в том случае, если я достигну этой степени всеобщности, я защищу себя в некоторой степени от того критического замечания, что механические процессы, которые, как я утверждаю, подобны научению, представляют собой нечто существенно отличное по своему характеру от научения.

С другой стороны, мне хотелось бы описать такие машины языком, не слишком чуждым языку, в котором выражаются действительные процессы нервной системы и поведения человека и животного. Я совершенно убежден, что при рассмотрении реального человеческого механизма я не могу надеяться быть правым в деталях и что я могу даже ошибаться в принципе. Тем не менее если я предложу схему, которая может быть выражена в форме понятий, относящихся к человеческому разуму и человеческому мозгу, то я дам отправную точку для преодоления критики, а также шаблон, с которым можно сопоставить выполнение, ожидаемое на основе других теорий. [с.76]

В конце XVII века Джон Локк полагал, что содержание разума состоит из того, что он назвал идеями. Для Локка разум совершенно пассивен, он представляет собой tabula rasa, на которой опыт индивидуума записывает свои собственные впечатления. Если эти впечатления являются частыми и совершаются либо одновременно, либо в определенной последовательности, либо в ситуациях, которые мы обычно относим к причинно-следственным связям, то, согласно Локку, эти впечатления, или идеи, будут формировать сложные идеи, обладающие известной позитивной тенденцией к удержанию составных элементов вместе. Механизм, посредством которого идеи удерживаются вместе, заключен в самих идеях; однако через все произведения Локка проходит своеобразное нежелание охарактеризовать подобный механизм. Его теория может иметь только такого рода отношение к действительности, как рисунок локомотива к работающему локомотиву. Она представляет собой диаграмму без каких-либо работающих частей. Это неудивительно, если мы примем во внимание время, когда Локк выдвинул свою теорию. Именно а астрономии, а не в технике или психологии впервые приобрела важное значение динамическая точка зрения, представление о работающих частях; и это заслуга Ньютона, бывшего не предшественником Локка, а его современником.

На протяжении нескольких столетий наука, находившаяся в основном под влиянием аристотелевского стремления к классификации, пренебрегала современным стремлением к обнаружению способов функционирования явлений. В самом деле, в отношении изучаемых до сих пор растений и животных трудно понять, каким иным образом биологическая наука могла вступить в собственно динамический период, кроме как благодаря беспрестанному накоплению фактов, относящихся к описательной естественной истории. В качестве примера можно сослаться на великого ботаника Карла Линнея. Для Линнея виды и роды представляли собой неизменные аристотелевские формы, а не вехи в процессе эволюции; однако только на основе тщательного линнеевского описания возможно было накопить убедительные факты, доказывающие эволюцию. Первые естественные историки были практическими “фронтиерами” (*) [с.77] разума: над ними слишком сильно довлело стремление к захвату новых территории, чтобы они могли достаточно тщательно подойти к проблеме объяснения наблюдаемых ими новых форм. На смену “фронтиеру” пришел деятельный фермер, а на смену натуралисту – современный ученый.

В последней четверти прошлого века и в первой четверти XX века другой великий ученый Иван Петрович Павлов по-своему исследовал, в сущности, ту же самую область, которую ранее изучал Локк. Однако Павлов исследовал условные рефлексы экспериментально, а не теоретически, как Локк. Более того, Павлов трактовал условный рефлекс так, как он проявляется у низших животных, а не так, как он проявляется у человека. Низшие животные не могут говорить языком человека, а говорят языком поведения. Большая часть их наиболее бросающегося в глаза поведения является эмоциональной по своим побуждениям, а большинство их эмоции связано с пищей. Павлов начал свои исследования именно с пищи и с физиологических симптомов слюноотделения. Нетрудно вставить канюлю в слюнную железу собаки и наблюдать выделение слюны, стимулируемое наличием пищи.

Обычно многие не связанные с пищей факторы, как, например, видимые объекты, услышанные звуки и т. д., не производят никакого воздействия на слюноотделение, однако Павлов показал, что если во время кормления собаки систематически показывать известные предметы или издавать известные звуки, то одного показа предмета или одного произведения звука будет достаточно, чтобы вызвать слюноотделение. То есть рефлекс слюноотделения обусловлен предыдущими ассоциациями.

Здесь перед нами на уровне рефлекса животных – нечто аналогичное ассоциации идей Локка – ассоциация, имеющая место в рефлекторных реакциях, эмоциональное содержание которых, по-видимому, очень сильно. Отметим довольно сложную природу предшествующих факторов, необходимых для того, чтобы вызвать условный рефлекс павловского типа. Прежде всего эти факторы обычно концентрируются вокруг чего-нибудь важного для жизни животного, в данном случае пищи, даже если на последующих ступенях рефлекса элемент нищи может быть целиком исключен. Мы можем проиллюстрировать важность первоначального возбудителя павловского условного рефлекса [с.78] на примере электрифицированных изгородей, окружающих скотоводческую ферму.




Поделиться с друзьями:


Дата добавления: 2015-05-06; Просмотров: 205; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.022 сек.