КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Построение двухфакторного уравнения регрессии
Сначала найдем среднеквадратическое отклонение (), () в ряду x и y, которое рассчитывается по формулам:
(2.1)
. (2.2)
где –– среднее значение результативного признака, –– среднее значение факторного признака. С помощью формул (2.1) и (2.2) рассчитываем среднеквадратические отклонения в ряду y, x2 и x3.
=
= 2
Прежде чем найти параметры уравнения множественной регрессии, определяют и анализируют парные коэффициенты корреляции (), () которые рассчитываются по формулам:
где –– среднее значение j -го факторного признака; –– среднее значение результативного признака; –– среднеквадратическое отклонение результативного признака; –– среднеквадратическое отклонение j -го факторного признака. Парные коэффициенты корреляции равны:
Связь между y и x2 прямая, слабая; связь между у и х3 обратная, очень слабая; связь между х2 и х3 прямая, тесная. Наличие между двумя факторами х2 и х3 весьма тесной линейной связи (парный коэффициент корреляции превышает по абсолютной величине 0,7) свидетельствует о наличии мультиколлениарности между факторами. Чтобы найти параметры уравнения множественной регрессии и использовать при этом ранее найденные парные коэффициенты корреляции, строится система нормальных уравнений в стандартизированном масштабе. Система нормальных уравнений в стандартизированном масштабе имеет следующий вид:
, (2.3)
где –– стандартизированный коэффициент регрессии. Подставляя в систему (2.3) ранее найденные парные коэффициенты корреляции получим:
Из системы (2.3) находим стандартизированные коэффициенты регрессии:
Коэффициент по абсолютному значению больше коэффициента . Фактор x2 влияет на результативный признак сильнее, чем фактор x3. Уравнение регрессии в стандартизированном масштабе имеет следующий вид:
(2.4)
Подставив значения и в уравнение (2.4) получим:
Переход от стандартизированного уравнения регрессии к уравнению регрессии в натуральном масштабе осуществляется по формулам:
где –– коэффициент регрессии при j-м факторном признаке, –– стандартизированный коэффициент регрессии при j-м факторном признаке.
Найдем параметры искомого уравнения:
.
Уравнение регрессии в натуральном масштабе находится по формуле:
(2.5)
Подставив найденные параметры уравнения регрессии в уравнение (2.5) получим:
. С увеличением расходов на конечное потребление, в текущих ценах % к ВВП на 1% к ВВП, при исключении влияния второго фактора (расходы домашних хозяйств), индекс человеческого развития увеличиться на 0,0067, а при неизменном показателе расходов на конечное потребление, с увеличением расходов домашних хозяйств на 1% к ВВП индекс человеческого развития уменьшится на 0,0054. Коэффициент множественной корреляции () рассчитывается по формуле:
. (2.6)
Подставив найденные ранее парные коэффициенты корреляции и стандартизированные коэффициенты регрессии в уравнение (2.6) получим:
.
Величина коэффициента множественной корреляции отражает слабую связь факторов и результата. Коэффициент множественной детерминации () рассчитывается по формуле:
, . Доля факторной дисперсии в общей дисперсии составляет приблизительно 7%. На неучтённые факторы в модели приходится около 93%. Средний коэффициент эластичности рассчитывается по формуле:
Для факторов х2 и х3 средние коэффициенты эластичности равны:
Общий коэффициент эластичности равен:
Эластичность по каждому фактору и в целом меньше единицы, следовательно, индекс человеческого развития увеличивается в меньшей степени, чем факторы. С увеличением расходов на конечное потребление на 1% от своего среднего уровня, индекс человеческого развития возрастает на 0,6073 % от своего среднего уровня, при увеличении расходов домашних хозяйств на 1 % от своего среднего уровня, индекс человеческого развития снижается на 0,3733 % от среднего уровня. Очевидно, что сила влияния расходов на конечное потребление на индекс человеческого развития больше, чем сила влияния расходов домашних хозяйств. С увеличением каждого фактора на 1% следует ожидать увеличения индекса человеческого развития на 0,234%. F -критерий Фишера () рассчитывается по формуле:
где –– коэффициент множественной детерминации; n –– количество наблюдений; m –– количество параметров в уравнении регрессии.
равно 3,44 при уровне значимости: равном 0,05 и степенях свободы: равной 2 и равной 22. меньше Уравнение регрессии и показатель тесноты связи являются статистически незначимыми. Частный F -критерий () рассчитываются по формуле:
где –– коэффициент множественной детерминации для модели с полным набором факторов; –– тот же показатель, но без включения в модель фактора хk. Для факторов х2 и х3 частные F - критерии равны:
равно 4,30 при уровне значимости равной 0,05 и степенях свободы: равной 1 и равной 22. меньше и меньше Так как частные F -критерии меньше табличных, то гипотезу о несущественности прироста показателя множественной детерминации за счет включения фактора x2 и x3 принимаем. Низкое значение и свидетельствует о статистической незначимости показателя детерминации, за счет включения в модель фактора после фактора и фактора после фактора . t -критерий Стьюдента () рассчитывается по формуле:
(2.8)
Подставив найденные ранее частные F - критерии в формулу (2.8) получим:
равно 2,0739 при уровне значимости равном 0,05 и степени свободы f равной 22. меньше и меньше Коэффициенты регрессии и являются статистическими незначимыми.
Дата добавления: 2015-03-29; Просмотров: 423; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |