Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Для разработки проекта




ИНЖЕНЕРНО-ГЕОЛОГИЧЕСКИЕ ИЗЫСКАНИЯ

 

7.1. Инженерно-геологические изыскания для разработки проекта строительства предприятий, зданий и сооружений должны обеспечивать комплексное изучение инженерно-геокриологических условий выбранной площадки (участка трассы) и прогноз их изменения в период строительства и эксплуатации с детальностью, достаточной для разработки проектных решений.

Инженерно-геологические изыскания должны обеспечивать получение материалов и данных для обоснования компоновки зданий и сооружений, конструктивных и объемно-планировочных решений, составления генерального плана проектируемого объекта, разработки мероприятий и сооружений по инженерной защите, охране геологической среды и созданию безопасных условий жизни населения, проекта организации строительства.

7.2. При комплексном изучении инженерно-геокриологических условий территории выбранной площадки (трассы) состав и объем изыскательских работ должны быть достаточными для выделения в плане и по глубине инженерно-геокриологических элементов по ГОСТ 20522-96 с определением для них лабораторными и (или) полевыми методами прочностных, деформационных, теплофизических характеристик грунтов, их нормативных и расчетных значений, а также установления количественных показателей интенсивности развития криогенных процессов (с учетом требований СНиП 2.02.04-88, СНиП 2.01.15-90 и СНиП 22-01-95), агрессивности подземных вод к бетону и коррозионной активности к металлам в сфере взаимодействия проектируемого объекта с геологической средой.

7.3. Сбор и обработка материалов изысканий и исследований прошлых лет (п. 5.2) должны предшествовать проведению инженерно-геокриологической съемки и дешифрированию аэро— и космоматериалов (п. 5.3).

7.4. При инженерно-геологических изысканиях для разработки проекта следует выполнять инженерно-геокриологическую съемку исследуемой территории площадки в масштабах, как правило, 1:2000-1:1000 (табл. 7.1) и притрассовой полосы линейных сооружений — в масштабах 1:5000-1:2000 (табл. 7.2).

При проектировании особо ответственных объектов строительства (в том числе уникальных зданий и сооружений) в сложных инженерно-геокриологических условиях допускается выполнение съемки в масштабе 1:500 при соответствующем обосновании в программе изысканий.

Выбор масштаба инженерно-геокриологической съемки следует осуществлять в зависимости от размера исследуемой территории, сложности инженерно-геокриологических условий и характера проектируемых зданий и сооружений.

7.5. Границы инженерно-геокриологической съемки следует устанавливать, как правило, в зависимости от положения основных геоморфологических и ландшафтных элементов, отражающих основные закономерности геологического строения и инженерно-геокриологических особенностей исследуемой территории, в том числе выдержанность по площади льдистости и температуры многолетнемерзлых грунтов, естественных и искусственных гидродинамических границ, с учетом необходимости выявления и изучения на сопредельной территории комплекса природно-техногенных факторов, обусловливающих развитие опасных криогенных процессов на территории проектируемого объекта строительства.

7.6. Количество точек наблюдений при выполнении инженерно-геокриологической съем- ки (в том числе горных выработок) следует устанавливать в зависимости от принятого в программе изысканий масштаба съемки и категории сложности инженерно-геокриологических условий в соответствии с табл. 7.1.

 

Таблица 7.1

 

Категория сложности инженерно- Количество точек наблюдений на 1 км2 инженерно-геокриологической съемки (в числителе), в том числе горных выработок (в знаменателе)
геокриологических Масштаб инженерно-геокриологической съемки
условий 1:5000 1:2000 1:1000 1:500
I 50 / 25 200 / 100 600 / 300 990 / 500
II 70 / 35 350 / 175 1150 / 575 1630 / 800
III 100 / 50 500 / 250 1500 / 750 3200 / 1600

 

Примечания

1 Количество горных выработок установлено для слабо обнаженной местности. При наличии обнажений количество горных выработок допускается уменьшать на 10-20% в зависимости от степени обнаженности местности.

2 Инженерно-геокриологическая съемка в масштабе 1:500 выполняется в сложных инженерно-геокриологических условиях при обосновании в программе изысканий.

 

Количество горных выработок, используемых для измерения температуры многолетнемерзлых грунтов, устанавливается с учетом ранее пройденных термометрических скважин, если в них замеры температуры проводились не более трех лет назад (для незастроенных территорий) и должно быть не менее половины числа пробуренных скважин глубиной не менее 10-15 м в зависимости от глубины нулевых годовых колебаний температуры грунтов. Часть термометрических скважин рекомендуется сохранять для ведения стационарных наблюдений (локального мониторинга) в период проектирования, строительства, эксплуатации и ликвидации зданий и сооружений.

7.7. Определение направлений маршрутов в пределах границ инженерно-геокриологической съемки и состав наблюдений на них следует принимать согласно пп.5.4, 5.5.

Размещение горных выработок в пределах территории съемки следует осуществлять по выбранным направлениям маршрутных наблюдений, предусматривая наибольшее количество выработок на склонах, в местах сочленения геоморфологических и ландшафтных элементов залегания сильнольдистых грунтов, повторножильных и пластовых льдов, криопэгов и на участках активного проявления опасных криогенных процессов. Размещение и число термометрических скважин должно обеспечивать получение характеристики температурного режима многолетнемерзлых грунтов, слагающих все выделенные при съемке инженерно-геокриологические районы (участки).

7.8. Глубину выработок следует устанавливать, исходя из предполагаемой сферы теплового и механического взаимодействия намечаемых объектов строительства с геологической средой с учетом вида (характера) проектируемых зданий и сооружений, принципов использования многолетнемерзлых грунтов в качестве оснований (СНиП 2.02.04-88) и требований пп. 8.5-8.7. В случае отсутствия решений по выбору фундаментов и оснований, глубину горных выработок следует назначать: при первом принципе — не менее глубины нулевых годовых колебаний температуры грунтов, при втором —3-5 м ниже расчетной глубины протаивания грунтов оснований, но не менее 10-15 м.

Выбор способа и разновидности бурения скважин следует устанавливать в соответствии с п. 5.6.

7.9. На участках распространения торфов, заторфованных сильнольдистых, засоленных, пластичномерзлых грунтов, криопэгов, пластовых и повторно-жильных льдов, активного проявления криогенных процессов, глубина горных выработок должна превышать прогнозную оценку глубин, на которых наличие специфических грунтов не будет оказывать влияния на устойчивость проектируемых зданий и сооружений.

7.10. Ширину полосы инженерно-геокриологической съемки вдоль трасс линейных сооружений и глубину горных выработок и расстоянием между ними следует принимать в соответствии с табл.7.2. Количество точек наблюдения на 1 км2 инженерно-геокриологической съемки определяется масштабом съемки, категорией сложности инженерно-геокриологических условий, видами линейных сооружений (табл. 7.1 и 7.2). Масштаб инженерно-геокриологической съемки, количество термометрических скважин обосновывается в программе изысканий при условии, что термозамеры должны проводиться в не менее чем в половине пробуренных скважин. Измерения температуры грунтов следует, как правило, проводить во всех скважинах глубиной 10 и более метров. На участках размещения мостов, водопропускных труб, подземных переходов магистральных трубопроводов через водотоки, а также в местах залегания повторно-жильных и пластовых льдов, активного развития криогенных процессов расстояния между выработками по трассе рекомендуется принимать в соответствии с табл.7.2.

 

Таблица 7.2

 

Виды линейных сооружений Ширина полосы Расстояние между выработками по Глубина выработки (м) при использовании принципа строительства
  трассы, м трассе, м первый второй
Железнодорожная и автомобильная дороги:        
насыпи высотой до 12 м; 200-500 100-300 3-5 ниже расчетной глубины сезонного 3-5 ниже расчетной глубины оттаивания
насыпи высотой более 12 м; 200-500 100-300 оттаивания грунтов. грунтов под телом насыпи, но не более 10-12 м
Выемки. 200-500 50-200 и в местах перехода выемки в насыпь 3-5 ниже расчетной глубины сезонного оттаивания грунтов основания выемки 3-5 ниже расчетной глубины оттаивания грунтов основания выемки, но не менее 10-12 м
Мосты 300-500 Не менее 3-х выработок (в русле и на берегах), но не реже, чем через 30-50 м 15-20 20-30
Путепроводы, эстакады 200-300 Не менее 3-х выработок, но не реже, чем через 30-50 м 15-20 20-30
Водопропускные трубы 200-500 1 выработка в точке пересечения оси трассы 12-15 3-5 ниже расчетной глубины оттаивания грунтов основания, но не менее 12-15 м
Воздушная линия электропередачи 100-300 300-500 10-15 10-15
Кабельные линии подземные 100-200 100-300 3-5 ниже расчетной глубины, оттаивания грунтов основания
Водопровод, канализация, теплосеть, газопровод 100-200 100-300 10-15 3-5 ниже расчетной глубины оттаивания грунтов, но не менее 12-15 м
Магистральный трубопровод при прокладке:        
надземной (на эстакаде); 100-500 100-300 3-5 м ниже глубины погружения опор 3-5 м ниже расчетной глубины оттаивания грунтов под опорой, но не менее 3 м ниже глубины заложения опор
наземной в насыпи; 100-500 200-400   3-5 м ниже расчетной глубины
подземной; 100-500 100-300 7-10 оттаивания грунтов
на участках подводных переходов через водотоки 300-500 не менее 3-х выработок (в русле и по берегам), но не реже, чем через 30-50 м 10-15 м глубже дна водотока 10-15 м глубже дна водотока

 

Примечания

1 Принятие рекомендуемых размеров ширины трассы, расстояний между горными выработками зависит от категории сложности инженерно-геокриологических условий (приложение Б).

2 При проектировании воздушных линий электропередачи и других сооружений на свайных фундаментах глубину выработок следует принимать с учетом п. 8.4.

3 Если в пределах глубин, указанных в таблице, залегают скальные грунты (морозные, слабольдистые), то горные выработки необходимо проходить на 2-3 м ниже кровли слабовыветрелых грунтов или подошвы фундамента при его заложении на скальный грунт.

4 При проложении в одном коридоре нескольких трасс линейных сооружений количество и глубину выработок следует устанавливать, исходя из максимальных глубин и минимальных расстояний между выработками для соответствующих видов линейных сооружений.

7.11. Для выявления общих закономерностей геологического строения и инженерно-геокриологических особенностей исследуемой территории следует предусматривать проходку опорных горных выработок до глубины не менее годовых нулевых колебаний температуры с детальным описанием состава и криогенного строения, повторными измерениями температуры грунтов.

Количество опорных выработок следует устанавливать, как правило, не менее одной в пределах каждого основного ландшафтного района (участка), выделенного при инженерно-геокриологической съемке.

7.12. Геофизические исследования следует выполнять для решения задач в соответствии с п.5.7 и приложениями Д и Е, а также проведения, в случае необходимости, параметрических измерений на опорных скважинах.

7.13. Полевые исследования грунтов следует осуществлять в соответствии с требованиями п. 5.8 и приложения Ж. Статическое и динамическое зондирования возможно использовать для определения степени уплотнения и упрочнения насыпных и намывных грунтов и их изменения во времени, определения динамической устойчивости водонасыщенных непромерзших грунтов.

Определение прочностных и деформационных характеристик мерзлых грунтов полевыми методами — испытаниями штампом, срезом целиков, следует выполнять при проектировании зданий и сооружений I уровня ответственности, а также зданий и сооружений II уровня ответственности, чувствительных к неравномерным осадкам, и в тех случаях, когда в сфере взаимодействия сооружений с основаниями залегают неоднородные по составу, льдистости и свойствам мерзлые (пластичномерзлые, в том числе — засоленные) грунты.

Количество испытаний грунтов штампом и срезом целиков для каждого характерного инженерно-геокриологического элемента следует устанавливать не менее трех.

В случае проектирования свайных фундаментов при обосновании в программе изысканий следует выполнять испытания мерзлых (пластичномерзлых, в том числе — засоленных) грунтов эталонной сваей, в количестве не менее трех для каждого характерного участка.

При проектировании на объекте зданий и сооружений повышенного уровня ответственности на свайных фундаментах со значительными нагрузками на фундаменты следует проводить статические испытания натурных свай. Количество и условия испытаний натурных свай следует обосновывать в программе изысканий в соответствии с техническим заданием заказчика.

Для определения гранулометрического состава крупнообломочных грунтов и гравелистых песков следует осуществлять грохочение и рассев проб по фракциям, определения льдистости и плотности в массиве — способами мерной лунки, мерного куба и др., а также определять влажность (льдистость) песчано-суглинистого заполнителя.

7.14. Гидрогеологические исследования следует выполнять в целях установления при проведении инженерно-геокриологической съемки особенностей гидрогеологических условий территории: оконтуривания участков с надмерзлотными (подземные воды в сезонноталых грунтах и надмерзлотных таликах), межмерзлотными (линзы и горизонты криопэгов, водоносные внутримерзлотные талики) и подмерзлотными водоносными горизонтами, включая при необходимости, оценку водопроницаемости и фильтрационной неоднородности грунтов, глубину залегания, сезонные и многолетние колебания уровня подземных вод в надмерзлотных и сквозных таликах, мощность водоносных пород, направление потока подземных вод, их химический состав, агрессивность к бетону и коррозионную активность к металлам в предполагаемой сфере взаимодействия проектируемых объектов с геологической средой (п.5.9). Необходимо также проводить прогнозную оценку возможного влияния подземных вод (в первую очередь — надмерзлотных в слое сезонного оттаивания) на активизацию криогенных процессов (морозного пучения, термопросадок грунтов оснований) в сфере теплового взаимодействия сооружения с основаниями и на прилегающей территории.

Методы полевых определений гидрогеологических параметров водоносных горизонтов таликов следует принимать в соответствии с приложением Л СП 11-105-97 (Часть I).

Для ориентировочной оценки водопроницаемости и фильтрационной неоднородности водонасыщенных грунтов (в особенности слабопроницаемых) рекомендуется применять экспресс-методы (откачки воды тартанием в процессе бурения скважин) в количестве не менее шести для каждого водоносного горизонта.

Виды и продолжительность откачек воды из скважин и число понижений уровня воды следует принимать в соответствии с приложением МСП 11-105-97 (Часть I).

Количество опытов по определению фильтрационных свойств грунтов (пробные и опытные одиночные откачки, наливы в шурфы) должно составлять не менее трех для каждого водоносного горизонта или основной литологической разности грунтов в зоне аэрации.

Гидрохимическое опробование скважин в процессе проведения любого вида откачек обязательно.

Каждый водоносный горизонт в пределах сферы взаимодействия должен быть охарактеризован не менее чем тремя стандартными анализами проб воды, единовременно отобранных в каждый период (сезон) года.

Каждый вид агрессивности и коррозионной активности воды-среды в зоне воздействия на строительные конструкции и кабели должен быть подтвержден не менее чем тремя анализами.

7.15. Стационарные наблюдения за изменениями геокриологических условий и за развитием криогенных процессов следует продолжать (если они были начаты на предшествующих этапах изысканий) или организовывать вновь с обоснованием в программе необходимости их проведения. Стационарные наблюдения проводятся на опытных площадках в соответствии с требованиями п.5.10 в естественных условиях и площадках, расположенных в зонах прогнозируемого теплового воздействия проектируемых сооружений. Состав и объемы стационарных наблюдений устанавливаются программой изысканий в зависимости от видов проектируемых сооружений, назначаемых принципов использования многолетнемерзлых грунтов в качестве оснований и природы наблюдаемых процессов (п.5.10). Продолжительность наблюдений должна быть не менее одного гидрологического года, наблюдательную сеть следует сохранить на период рабочего проектирования с соответствующими обоснованиями в программе изысканий и рекомендациями по продолжению ведения мониторинга.

7.16. Лабораторные исследования образцов мерзлых грунтов и подземных вод следует осуществлять в соответствии с требованиями пп. 5.11 и 6.15 и приложениями И и К.

Виды лабораторных исследований и количество образцов грунтов следует устанавливать соответствующими расчетами в программе изысканий для каждого характерного слоя (инженерно-геокриологического элемента) в зависимости от требуемой точности определения их свойств, степени неоднородности грунтов (по составу и криогенному строению) и уровня ответственности проектируемого объекта (с учетом результатов ранее выполненных изысканий в данном районе).

При отсутствии требуемых для расчетов данных следует обеспечивать по каждому выделенному инженерно-геокриологическому элементу получение частных значений в количестве не менее 10 характеристик состава мерзлых грунтов или не менее 6 характеристик механических (прочностных и деформационных) свойств мерзлых грунтов, с учетом требований СНиП 2.02.04-88.

Прямые определения прочностных, деформационных и теплофизических свойств грунтов следует, как правило, проводить при проектировании зданий и сооружений I и II уровней ответственности. При проектировании сооружений III уровня ответственности возможно определение этих характеристик расчетом по физическим показателям в соответствии с СНиП 2.02.04-88 или региональными характеристиками свойств грунтов (приложение И).

Определение прочностных и деформационных характеристик мерзлых грунтов в лабораторных условиях следует производить методами одноосного и компрессионного сжатия и методом одноплоскостного среза по поверхности смерзания (ГОСТ 12248-96). Выполнение испытаний мерзлых грунтов методом трехосного сжатия проводится при соответствующем обосновании в программе изысканий.

По образцам многолетнемерзлых грунтов, отбираемых из опорных скважин, следует проводить определения характеристик грунтов по полному комплексу, включая прочностные и деформационные.

Из каждого водоносного горизонта в таликах и, в первую очередь, вод слоя сезонного оттаивания в сфере взаимодействия проектируемых сооружений с основаниями, следует отбирать не менее трех проб воды (в каждый сезон года) для оценки их химического состава по результатам стандартного анализа, а при необходимости — полного или специального анализа.

7.17. При обследовании зданий и сооружений, характеризующихся наличием деформаций, следует собирать в соответствии с указаниями п.5.12, сведения об их конструкции, эффективности работы проветриваемых подполий и других охлаждающих устройств, характере вертикальной планировки, системе и состоянии ливневой канализации, дренажей, конструкции и способах прокладки тепло— и водонесущих коммуникаций.

Обследование состояния деформируемых зданий и сооружений следует проводить совместно с представителями организаций, выполнявших проектирование объекта строительства или местной службы эксплуатации этих зданий и сооружений.

7.18. Для разработки рабочего проекта на строительство технически несложных объектов производственного и жилищно-гражданского назначения, по которым имеются материалы инженерно-геологических изысканий для предпроектной документации необходимой детальности, изыскательские работы следует выполнять по правилам раздела 8.

7.19 Прогноз возможных изменений инженерно-геокриологических и гидрогеологических условий в соответствии с техническим заданием заказчика при изысканиях для разработки проектной документации следует осуществлять, как правило, в форме количественного геокриологического прогноза с установлением числовых значений прогнозируемых характеристик температуры и свойств многолетнемерзлых, оттаивающих, промерзающих грунтов, закономерностей возникновения и интенсивности развития геологических, инженерно-геологических и криогенных процессов в пространстве и во времени в контурах проектируемых зданий и сооружений и сопредельных территориях. Прогноз осуществляется в соответствии с требованиями СНиП 2.02.04-88, а также по существующим методикам (приложение Н). При необходимости геокриологический прогноз выполняется для нескольких вариантов возможного размещения проектируемых сооружений в целях выбора наиболее оптимального при назначении одного из принципов строительства.

Количественный прогноз возможных изменений геокриологических условий площадки (трассы) изысканий следует осуществлять на основе полученных при изысканиях результатов изучения состава, температуры и свойств мерзлых грунтов лабораторными и полевыми методами, данными стационарных наблюдений за динамикой высоты снежного покрова в естественных и нарушенных условиях (и его свойств) и развитием опасных криогенных процессов с использованием аналитических (расчетных) методов и, при необходимости, методов физического моделирования.

Для обоснования количественного прогноза изменений геокриологических условий в соответствии с техническим заданием заказчика при необходимости следует выполнять дополнительный объем полевых и лабораторных изыскательских работ и исследований.

Для составления количественного прогноза возможных изменений инженерно-геокриологических условий на территории проектируемого строительства зданий и сооружений I уровня ответственности в сложных инженерно-геокриологических условиях рекомендуется привлекать специализированные проектные и (или) научно-исследовательские организации.

7.20. Состав и содержание технического отчета (заключения) о результатах выполненных инженерно-геологических изысканий для разработки проекта строительства предприятия, здания и сооружения должны соответствовать требованиям п. 6.18. В разделе «Геокриологические условия» должны быть представлены характеристики всех выделенных инженерно-геокриологических элементов в соответствии с ГОСТ 20522-96.

В заключение технического отчета должны быть сформулированы рекомендации и предложения по выбору принципа использования грунтов в качестве оснований, мероприятиям по защите сопредельных проектируемым объектам территорий от опасных криогенных процессов, даны рекомендации и предложения по проведению последующих изысканий.

При определении нормативных и расчетных значений показателей прочностных и деформационных свойств многолетнемерзлых грунтов выделенных инженерно-геокриологических элементов необходимо использовать в расчетах результаты полевых и лабораторных исследований, выполненных на предшествующих стадиях работ в пределах границ площадки (участка) изысканий и в прилегающей зоне.

Ширину прилегающей зоны следует принимать равной среднему расстоянию между выработками соответствующего масштаба инженерно-геокриологической съемки с учетом категории сложности инженерно-геокриологических условий и расположения объекта в пределах геоморфологических и ландшафтных элементов. При обосновании в программе изысканий допускается увеличивать прилегающую зону в пределах одного или нескольких геоморфологических или ландшафтных элементов.

Данные инженерно-геологических изысканий, выполненных за пределами прилегающей зоны, следует использовать при составлении прогноза изменений свойств мерзлых грунтов и установлении их изменений на освоенных (застроенных) территориях.

 




Поделиться с друзьями:


Дата добавления: 2015-03-31; Просмотров: 374; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.052 сек.