КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Уравнение для расчета простого трубопровода
Классификация трубопроводов Трубопроводы нашли исключительно широкое применение в водоснабжении, транспортировке нефти и газа, в системах теплоснабжения, в различных энергетических и двигательных установках. Жидкость движется по трубопроводу вследствие того, что ее потенциальная энергия в начале трубопровода больше, чем в конце. Эта разность потенциальных энергий необходима для преодоления гидравлических сопротивлений между рассматриваемыми сечениями трубопровода. Она может быть создана разными способами: а) работой насоса; б) благодаря разности уровней жидкости – самотечная подача; в) из-за повышенного давления газа на свободную поверхность жидкости в баке – вытеснительная подача. При расчете трубопроводов используются: уравнение неразрывности, уравнение Бернулли, зависимости для расчета сопротивлений и экспериментальные данные. Простыми трубопроводами называют такие, у которых диаметр трубы, а также расход жидкости на всем протяжении остаются неизменными, а сложными – все остальные. Любой сложный трубопровод всегда возможно представить состоящим из ряда простых. Простой трубопровод – это труба постоянного диаметра с местными сопротивлениями, по которой проходит постоянный расход. Большинство простых трубопроводов вписывается в одну из следующих двух схем, рис. 2.1.; в резервуарах уровень поддерживается постоянным и поэтому течение везде установившееся.
Схема 1 Схема 2 Рис.2. 1. В обоих случаях движущей силой является сила тяжести, которая приводит к разности давлений и под действием этой разности жидкость приходит в движение. В обоих случаях потенциальная энергия положения преобразуется в кинетическую энергию, а последняя – в тепловую за счет сил трения.
. Точнее результат для скорости течения получается, если приравнять запас потенциальной энергии и кинетическую энергию текущей жидкости. Для случая идеальной жидкости или . В действительности вследствие вязкости (трение в жидкости) часть кинетической энергии переходит в тепловую. Поэтому чем больше сопротивлений по длине и местных, тем скорость течения меньше. Как это часто бывает, наиболее точный и исчерпывающий результат получается при решении общих уравнений. В данном случае вполне понятно, что основным уравнением, связывающим запас потенциальной энергии, кинетическую энергию потока и потери является уравнение Бернулли
Суммарные потери hΣ складываются из потерь по длине hl и местных hм
Выбираем плоскость (ось) сравнения, совпадающей с осью горизонтальной части трубопровода, а сечения 1-1 и 2-2 совпадающими со свободными поверхностями в сосудах, рис. 2.1. Физический смысл уравнения для схемы 1 следующий: потенциальная энергия положения частично преобразуется в кинетическую энергию жидкости, вытекающей в атмосферу и частично превращается в тепло. Для схемы 2 имеем H=hпот, т.е. вся потенциальная энергия полностью преобразуется в тепло. Уравнения баланса энергии для обеих схем имеют одинаковый вид, а именно
В случае схемы 2 из всей суммы коэффициентов местных сопротивлений выделяется коэффициент внезапного расширения при входе трубы в емкость 2 (он равен единице, т.е. z = 1). Если труба круглая, то (2.6) преобразуется к виду (V = 4 Q/pd 2)
Это уравнение будем в дальнейшем называть уравнением для расчета простого трубопровода.
а) перетекание из 1 в 2; б) перетекание из 2 в 1; в) жидкость покоится. Написать условия перетекания и сделать краткий анализ решения.
Дата добавления: 2015-03-31; Просмотров: 1185; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |