Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Изолированная нейтраль




Способы исполнение нейтрали (преимущества и недостатки).

Способ заземления нейтрали сети является достаточно важной характеристикой. Он определяет:

  • ток в месте повреждения и перенапряжения на неповрежденных фазах при однофазном замыкании;
  • схему построения релейной защиты от замыканий на землю;
  • уровень изоляции электрооборудования;
  • выбор аппаратов для защиты от грозовых и коммутационных перенапряжений (ограничителей перенапряжений);
  • бесперебойность электроснабжения;
  • допустимое сопротивление контура заземления подстанции;
  • безопасность персонала и электрооборудования при однофазных замыканиях.

В настоящее время в мировой практике используются следующие способы заземления нейтрали сетей среднего напряжения (термин «среднее напряжение» используется в зарубежных странах для сетей с диапазоном рабочих напряжений 1-69 кВ):

  • изолированная (незаземленная);
  • глухозаземленная (непосредственно присоединенная к заземляющему контуру);
  • заземленная через дугогасящий реактор;
  • заземленная через резистор (низкоомный или высокоомный).

Режим изолированной нейтрали достаточно широко применяется в России. При этом способе заземления нейтральная точка источника (генератора или трансформатора) не присоединена к контуру заземления. В распределительных сетях 6-10 кВ России обмотки питающих трансформаторов, как правило, соединяются в треугольник (рис. 1), поэтому нейтральная точка физически отсутствует.
ПУЭ ограничивает применение режима изолированной нейтрали в зависимости от тока однофазного замыкания на землю сети (емкостного тока). Компенсация тока однофазного замыкания на землю (использование дугогасящих реакторов) должна предусматриваться при емкостных токах:

  • более 30 А при напряжении 3-6 кВ;
  • более 20 А при напряжении 10 кВ;
  • более 15 А при напряжении 15-20 кВ;
  • более 10 А в сетях напряжением 3-20 кВ, имеющих железобетонные и металлические опоры на воздушных линиях электропередачи, и во всех сетях напряжением 35 кВ;
  • более 5 А в схемах генераторного напряжения 6-20 кВ блоков «генератор–трансформатор».

Вместо компенсации тока замыкания на землю может применяться заземление нейтрали через резистор (резистивное) с соответствующим изменением логики действия релейной защиты.
Исторически режим изолированной нейтрали был первым режимом заземления нейтрали, использовавшимся в электроустановках среднего напряжения. Его достоинствами являются:

  • отсутствие необходимости в немедленном отключении первого однофазного замыкания на землю;
  • малый ток в месте повреждения (при малой емкости сети на землю).
  • Недостатками этого режима заземления нейтрали являются:
  • возможность возникновения дуговых перенапряжений при перемежающемся характере дуги с малым током (единицы–десятки ампер) в месте однофазного замыкания на землю;
  • возможность возникновения многоместных повреждений (выход из строя нескольких электродвигателей, кабелей) из-за пробоев изоляции на других присоединениях, связанных с дуговыми перенапряжениями;
  • возможность длительного воздействия на изоляцию дуговых перенапряжений, что ведет к накоплению в ней дефектов и снижению срока службы;
  • необходимость выполнения изоляции электрооборудования относительно земли на линейное напряжение;
  • сложность обнаружения места повреждения;
  • опасность электропоражения персонала и посторонних лиц при длительном существовании замыкания на землю в сети;
  • сложность обеспечения правильной работы релейных защит от однофазных замыканий, так как реальный ток замыкания на землю зависит от режима работы сети (числа включенных присоединений).

Кроме того, значительное число повреждений трансформаторов напряжения типа НТМИ-6(10), ЗНОЛ-6(10), ЗНОМ-35 в отечественных сетях 6-35 кВ с изолированной нейтралью при однофазных замыканиях на землю также связано с состоянием нейтрали сетей среднего напряжения.
Недостатки режима работы с изолированной нейтралью весьма существенны, а такое достоинство, как отсутствие необходимости отключения первого замыкания, достаточно спорно. Так, всегда есть вероятность возникновения второго замыкания на другом присоединении из-за перенапряжений и отключения сразу двух кабелей, электродвигателей или воздушных линий. Такое развитие событий в эксплуатации не так редко, как кажется на первый взгляд. Именно по этой причине во многих странах, таких, как США, Канада, Англия, Австралия, Бельгия, Португалия, Франция и другие, отказ от режима изолированной нейтрали произошел еще в 40–50-х годах прошлого века. Как видно из табл. 1, в настоящее время из промышленно развитых стран режим изолированной нейтрали применяют только Италия, Япония и Финляндия. Причем в Италии сейчас рассматривается возможность перехода к работе с заземлением через дугогасящий реактор, а в Японии – с заземлением через резистор.
В России до последнего времени режим изолированной нейтрали был закреплен в ПУЭ. Именно этим объясняется сложившееся положение, когда даже в сетях с высоковольтными электродвигателями, где защита от однофазных замыканий выполнена с действием на отключение без выдержки времени, применяется режим изолированной нейтрали.
Нейтраль, заземленная через дугогасящий реактор

Она также достаточно часто применяется в России. Этот способ заземления нейтрали, как правило, находит применение в разветвленных кабельных сетях промышленных предприятий и городов. При этом способе нейтральную точку сети получают, используя специальный трансформатор (рис.2).
С точки зрения исторической последовательности возникновения этот способ заземления нейтрали является вторым. Он был предложен немецким инженером Петерсеном в 20-х годах прошлого столетия (в европейских странах дугогасящие реакторы называют по имени изобретателя «Petersen coil» – катушка Петерсена).

 

Достоинствами этого метода заземления нейтрали являются:

  • отсутствие необходимости в немедленном отключении первого однофазного замыкания на землю;
  • малый ток в месте повреждения (при точной компенсации – настройке дугогасящего реактора в резонанс);
  • возможность самоликвидации однофазного замыкания, возникшего на воздушной линии или ошиновке (при точной компенсации – настройке дугогасящего реактора в резонанс);
  • исключение феррорезонансных процессов, связанных с насыщением трансформаторов напряжения и неполнофазными включениями силовых трансформаторов.

Недостатками этого режима заземления нейтрали являются:

  • возникновение дуговых перенапряжений при значительной расстройке компенсации;
  • возможность возникновения многоместных повреждений при длительном существовании дугового замыкания в сети;
  • возможность перехода однофазного замыкания в двухфазное при значительной расстройке компенсации;
  • возможность значительных смещений нейтрали при недокомпенсации и возникновении неполнофазных режимов;
  • возможность значительных смещений нейтрали при резонансной настройке в воздушных сетях;
  • сложность обнаружения места повреждения;
  • опасность электропоражения персонала и посторонних лиц при длительном существовании замыкания на землю в сети;
  • сложность обеспечения правильной работы релейных защит от однофазных замыканий, так как ток поврежденного присоединения очень незначителен.

В России режим заземления нейтрали через дугогасящий реактор применяется в основном в разветвленных кабельных сетях с большими емкостными токами. Кабельная изоляция в отличие от воздушной не является самовосстанавливающейся. То есть, однажды возникнув, повреждение не устранится, даже несмотря на практически полную компенсацию (отсутствие) тока в месте повреждения. Соответственно для кабельных сетей самоликвидация однофазных замыканий как положительное свойство режима заземления нейтрали через дугогасящий реактор не существует.
При дуговом характере однофазного замыкания скважность воздействия перенапряжений на изоляцию сети ниже, чем при изолированной нейтрали, но и здесь существует возможность возникновения многоместных повреждений. В последние десятилетия сети 6-10 кВ разрослись, а мощность компенсирующих устройств на подстанциях осталась той же, соответственно значительная доля сетей среднего напряжения сейчас работает с существенной недокомпенсацией. Это ведет к исчезновению всех положительных свойств сетей с компенсированной нейтралью. Отметим дополнительно, что дугогасящий реактор компенсирует только составляющую промышленной частоты тока однофазного замыкания. При наличии в сети источников высших гармоник последние могут содержаться в токе замыкания и в некоторых случаях даже усиливаться.
Применение режима с нейтралью, заземленной через дугогасящий реактор, в таких странах, как Финляндия, Швеция, отличается от российского. В этих странах он применяется в сетях с воздушными линиями, где его применение наиболее эффективно. Кроме того, в этих странах существует значительное сопротивление грунта, состоящего в основном из скальных пород, и режим заземления нейтрали через дугогасящий реактор позволяет обнаруживать однофазные замыкания через значительные переходные сопротивления 3-5 кОм. Применение режима заземления нейтрали через дугогасящий реактор в таких странах, как Германия, Австрия, Швейцария, носит в некоторой степени традиционный характер (выше уже говорилось онемецком инженере – изобретателе этого способа). Тем не менее и в этих странах этот режим заземления нейтрали применяется в основном в сетях с воздушными линиями. В сетях среднего напряжения зарубежных промышленных предприятий используется резистивное заземление нейтрали.

Нейтраль, заземленная через резистор (высокоомный или низкоомный)
Этот режим заземления используется в России очень редко, только в некоторых сетях собственных нужд блочных электростанций и сетях газоперекачивающих компрессорных станций.


Рис. 1. Схема двухтрансформаторной подстанции с изолированной нейтралью.


Рис. 2. Схема двухтрансформаторной подстанции с нейтралью, заземленной через дугогасящий реактор.


Рис. 3. Схема двухтрансформаторной подстанции с нейтралью, заземленной через резистор.


Рис. 4. Варианты включения резистора в нейтраль сети 6-10 кВ.

Достоинствами резистивного заземления нейтрали являются:
  • отсутствие дуговых перенапряжений высокой кратности и многоместных повреждений в сети;
  • отсутствие необходимости в отключении первого однофазного замыкания на землю (только для высокоомного заземления нейтрали);
  • исключение феррорезонансных процессов и повреждений трансформаторов напряжения;
  • уменьшение вероятности поражения персонала и посторонних лиц при однофазном замыкании (только для низкоомного заземления и быстрого селективного отключения повреждения);
  • практически полное исключение возможности перехода однофазного замыкания в многофазное (только для низкоомного заземления и быстрого селективного отключения повреждения);
  • простое выполнение чувствительной и селективной релейной защиты от однофазных замыканий на землю, основанной на токовом принципе.
Недостатками резистивного режима заземления нейтрали являются:
  • увеличение тока в месте повреждения;
  • необходимость в отключении однофазных замыканий (только для низкоомного заземления);
  • ограничение на развитие сети (только для высокоомного заземления).
 

Отсутствие дуговых перенапряжений при однофазных замыканиях и возможность организации селективной релейной защиты являются неоспоримыми преимуществами режима резистивного заземления нейтрали. Именно эти преимущества способствовали широкому распространению такого режима заземления нейтрали в разных странах.

 

Глухозаземленная нейтраль
Как уже было сказано, в отечественных сетях 6-35 кВ не используется.

К сожалению, в России жесткие нормативные требования ПУЭ в отношении применения только изолированной нейтрали не позволяли до последнего времени использовать заземление нейтрали через резистор. Даже сейчас, после внесения изменений в ПУЭ, проектные институты продолжают закладывать в новые объекты старую идеологию. По-видимому, необходимы совместные усилия заказчиков, производителей оборудования и проектных институтов для изменения существующей ситуации.
В заключение следует отметить, что режим заземления нейтрали в сети среднего напряжения должен выбираться в каждом конкретном случае с учетом следующих факторов:

  • уровня емкостного тока сети;
  • допустимого тока однофазного замыкания, исходя из разрушений в месте повреждения;
  • безопасности персонала и посторонних лиц;
  • допустимости отключения однофазных замыканий с позиций непрерывности технологического цикла;
  • наличия резерва;
  • типа и характеристик используемых защит.

Однако в любом случае выбор должен делаться между заземлением нейтрали через дугогасящий реактор, высокоомным или низкоомным заземлением, а режим изолированной нейтрали должен быть полностью исключен.




Поделиться с друзьями:


Дата добавления: 2015-04-23; Просмотров: 1615; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.015 сек.