Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Билет 12




2)

1)

Архитектура информационной системы - концепция, определяющая модель,

структуру, выполняемые функции и взаимосвязь компонентов информационной системы.

(Глоссарий)

С точки зрения программно-аппаратной реализации можно выделить ряд типовых

архитектур ИС.

Компоненты информационной системы по выполняемым функциям можно разделить

на три слоя: слой представления, слой бизнес-логики и слой доступа к данным.

Слой представления - все, что связано с взаимодействием с пользователем: нажатие

кнопок, движение мыши, отрисовка изображения, вывод результатов поиска и т.д.

Бизнес логика - правила, алгоритмы реакции приложения на действия пользователя

или на внутренние события, правила обработки данных.

Слой доступа к данным - хранение, выборка, модификация и удаление данных,

связанных с решаемой приложением прикладной задачей

Традиционные архитектуры информационных систем.

Многоуровневый "клиент-сервер"

Многоуровневая архитектура клиент-сервер (Multitier architecture) – разновидность архитектуры клиент-сервер, в которой функция обработки данных вынесена на один или несколько отдельных серверов [15]. Это позволяет разделить функции хранения, обработки и представления данных для более эффективного использования возможностей серверов и клиентов.

Среди многоуровневой архитектуры клиент-сервер наиболее распространена трехуровневая архитектура (трехзвенная архитектура, three- tier), предполагающая наличие следующих компонентов приложения: клиентское приложение (обычно говорят "тонкий клиент" или терминал), подключенное к серверу приложений, который в свою очередь подключен к серверу базы данных [14, 17].

Схематически такую архитектуру можно представить, как показано на рис. 5.4.


Рис. 5.4. Представление многоуровневой архитектуры "клиент-сервер"

  • Терминал – это интерфейсный (обычно графический) компонент, который представляет первый уровень, собственно приложение для конечного пользователя. Первый уровень не должен иметь прямых связей с базой данных (по требованиям безопасности), быть нагруженным основной бизнес-логикой (по требованиям масштабируемости) и хранить состояние приложения (по требованиям надежности). На первый уровень может быть вынесена и обычно выносится простейшая бизнес-логика: интерфейс авторизации, алгоритмы шифрования, проверка вводимых значений на допустимость и соответствие формату, несложные операции (сортировка, группировка, подсчет значений) с данными, уже загруженными на терминал.
  • Сервер приложений располагается на втором уровне. На втором уровне сосредоточена большая часть бизнес-логики. Вне его остаются фрагменты, экспортируемые на терминалы, а также погруженные в третий уровень хранимые процедуры и триггеры.
  • Сервер базы данных обеспечивает хранение данных и выносится на третий уровень. Обычно это стандартная реляционная или объектно-ориентированная СУБД. Если третий уровень представляет собой базу данных вместе с хранимыми процедурами, триггерами и схемой, описывающей приложение в терминах реляционной модели, то второй уровень строится как программный интерфейс, связывающий клиентские компоненты с прикладной логикой базы данных.

В простейшей конфигурации физически сервер приложений может быть совмещен с сервером базы данных на одном компьютере, к которому по сети подключается один или несколько терминалов.

В "правильной" (с точки зрения безопасности, надежности, масштабирования) конфигурации сервер базы данных находится на выделенном компьютере (или кластере), к которому по сети подключены один или несколько серверов приложений, к которым, в свою очередь, по сети подключаются терминалы.

Плюсами данной архитектуры являются [12, 14, 16, 17]:

  • клиентское ПО не нуждается в администрировании;
  • масштабируемость;
  • конфигурируемость – изолированность уровней друг от друга позволяет быстро и простыми средствами переконфигурировать систему при возникновении сбоев или при плановом обслуживании на одном из уровней;
  • высокая безопасность;
  • высокая надежность;
  • низкие требования к скорости канала (сети) между терминалами и сервером приложений;
  • низкие требования к производительности и техническим характеристикам терминалов, как следствие снижение их стоимости.

Минусы

  • растет сложность серверной части и, как следствие, затраты на администрирование и обслуживание;
  • более высокая сложность создания приложений;
  • сложнее в разворачивании и администрировании;
  • высокие требования к производительности серверов приложений и сервера базы данных, а, значит, и высокая стоимость серверного оборудования;
  • высокие требования к скорости канала (сети) между сервером базы данных и серверами приложений.

Некоторые авторы (например, Мартин Фаулер [18]) представляют многозвенную архитектуру (трехзвенную) в виде пяти уровней (рис. 5.5):

1. Представление;

2. Уровень представления;

3. Уровень логики;

4. Уровень данных;

5. Данные.


Рис. 5.5. Пять уровней многозвенной архитектуры "клиент-сервер"

К представлению относится вся информация, непосредственно отображаемая пользователю: сгенерированные html-страницы, таблицы стилей, изображения.

Уровень представления охватывает все, что имеет отношение к общению пользователя с системой. К главным функциям слоя представления относятся отображение информации и интерпретация вводимых пользователем команд с преобразованием их в соответствующие операции в контексте логики и данных.

Уровень логики содержит основные функции системы, предназначенные для достижения поставленной перед ним цели. К таким функциям относятся вычисления на основе вводимых и хранимых данных, проверка всех элементов данных и обработка команд, поступающих от слоя представления, а также передача информации уровню данных.

Уровень доступа к данным – это подмножество функций, обеспечивающих взаимодействие со сторонними системами, которые выполняют задания в интересах приложения.

Данные системы обычно хранятся в базе данных.

Методы проектирования АИС и их классификация

Основу технологии проектирования АИС составляет методология, которая определяет сущность, основные отличительные технологические особенности. Методология проектирования предполагает наличие некоторой концепции, принципов проектирования, реализуемых набором методов проектирования, которые, в свою очередь, должны поддерживаться некоторыми средствами проектирования.
Организация проектирования предполагает определение методов взаимодействия проектировщиков между собой и с заказчиком в процессе создания проекта АИС, которые могут также поддерживаться набором специфических средств.
Методы проектирования АИС можно классифицировать по степени использования средств автоматизации, типовых проектных решений, адаптивности к предполагаемым изменениям.
Так, по степени автоматизации методы проектирования разделяются на методы:
ручного проектирования, при котором проектирование компонентов ЭИС осуществляется без использования специальных инструментальных программных средств, а программирование - на алгоритмических языках; '
компьютерного проектирования, которое производит генерацию иди конфигурацию (настройку) проектных решений на основе использования специальных инструментальных программных средств.
По степени использования типовых проектных решений различают следующие методы проектирования:
оригинального (индивидуального) проектирования, когда проектные решения разрабатываются "с нуля" в соответствии с требованиями к АИС;
типового проектирования, предполагающего конфигурацию АИС из готовых типовых проектных решений (программных модулей).
Оригинальное (индивидуальное) проектирование АИС характеризуется тем, что все виды проектных работ ориентированы на создание индивидуальных для каждого объекта проектов, которые в максимальной степени отражают все его особенности.
Типовое проектирование выполняется на основе опыта, полученного при разработке индивидуальных проектов. Типовые проекты как обобщение опыта для некоторых групп организационно-экономических систем или видов работ в каждом конкретном случае связаны со множеством специфических особенностей и различаются по степени охвата функций управления, выполняемым работам и разрабатываемой проектной документации.
По степени адаптивности проектных решений методы проектирования классифицируются на методы:
реконструкции, когда адаптация проектных решений выполняется путем переработки соответствующих компонентов (перепрограммирования программных модулей);
параметризации, когда проектные решения настраиваются (перегенерируются) в соответствии с изменяемыми параметрами;
реструктуризации модели, когда изменяется модель проблемной области, на основе которой автоматически перегенерируются проектные решения.
Сочетание различных признаков классификации методов проектирования обусловливает характер используемой технологии проектирования АИС, среди которых выделяются два основных класса: каноническая и индустриальная технологии.
Индустриальная технология проектирования, в свою очередь, разбивается на два подкласса: автоматизированное (использование CASE-технологий) и типовое (параметрически-ориентированное или модельно-ориентированное) проектирование. Использование индустриальных технологий проектирования не исключает использования в отдельных случаях канонической технологии.
Для конкретных видов технологий проектирования свойственно применение определенных средств разработки АИС, которые поддерживают выполнение, как отдельных проектных работ, этапов, так и их совокупностей. Поэтому перед разработчиками АИС, как правило, стоит задача выбора средств проектирования, которые по своим характеристикам в наибольшей степени соответствуют требованиям конкретного предприятия.

1. Стадии жизненного цикла АИС: анализ и проектирование

2. Каноническое проектирование АИС

3. Разработать c помощью САSЕ-средства функциональную модель ремонта компьютера.




Поделиться с друзьями:


Дата добавления: 2015-04-23; Просмотров: 3715; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.017 сек.