Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Развитие и размещение традиционной электроэнергетики




Общая характеристика электроэнергетики

Электроэнергетика - важнейший фактор территориальной организации хозяйственной деятельности. Её объекты обладают мощным районообразующим и градообразующим потенциалом. Если в первые советские пятилетки, имеющиеся технологии позволяли передавать электрическую энергию на расстояние не более 300 – 400 км, то в настоящее время радиус эффективной передачи – 2,5 и более тыс. км. Следовательно, размещение производства относительно источников энергии становится более свободным, независимым.

Системообразующий элемент энергетики – распределительные сети. Общая протяженность линий электропередач в стране – более 2,5 млн. км (для сравнения: в Японии только 60 тыс. км – это яркий пример воздействия территориальных масштабов страны на объем затрат по ее обустройству).

Размещение объектов электроэнергетики зависит от двух основных факторов:

1. Наличия и качественного состояния первичных энергоресурсов, геологических условий добычи сырья и возможностей его транспортировки с минимальными потерями и затратами.

2. Платежеспособного спроса на произведенную энергию.

В настоящее время по производству электроэнергии Россия находится на 4 месте в мире после США, КНР и Японии.

В стране значительны потери электроэнергии. Так в 2005 году они составляли 12,9 % от суммарной выработки.

70 % территории России, на которой проживает менее 10 % населения, не обслуживается единой системой энергоснабжения (ЕЭС), относится к зоне децентрализованного энергоснабжения – Зона Севера.

Структура выработки электроэнергии в России в целом соответствует мировым пропорциям и распределяется между основными генерирующими мощностями следующим образом (табл. 1). Главный тип станций – тепловые.

Почти 25 % электрической энергии вырабатывается в Центральном федеральном округе, 20 % - в Сибирском, 19,5 % - Приволжском, 15 % - Уральском. Как видим, производство электроэнергии по территории страны весьма рассредоточено, в отличие от добычи минерального топлива, и в большей степени ориентируется не на сырьевой, а потребительский фактор. К электроизбыточному району относится Восточно-Сибирский, самый электродефицитный район – Центральный.

53 % вырабатываемой электроэнергии потребляется в промышленности, 8 % - на транспорте, 7 % - в сельском хозяйстве, доля прочих отраслей – 32 %.

Электроэнергетика, основанная на различных видах невозобновимого минерального топлива (химическая энергия > тепловая энергия > электрическая энергия) и использующая силу падающей воды рек относится к традиционной. На долю ТЭС, ГЭС и АЭС приходится 99 % вырабатываемой в России энергии.

Таблица 1

Динамика и структура выработки электроэнергии в Российской Федерации

             
Динамика выработки, млрд. кВт/ч
  30,8 470,2       1023,3
Структура выработки по типам станций, %
ТЭС 95,1 79,3 77,3 73,6 66,2  
ГЭС 4,9     15,4 18,8  
АЭС - 0,7 6,7      

 

Теплоэлектростанции. Всего на территории России действует около 600 тепловых станций. Они вырабатывают электрическую и тепловую энергию за счет сжигания природного газа (67 %), угля (28 %) и мазута (5 %).

Тепловая электроэнергетика представлена станциями двух типов, а именно: работающими в режиме конденсации (вырабатывается только электрическая энергия) и работающими в режиме теплофикации (вырабатывается электрическая и тепловая энергия).

Конденсационные электростанции (КЭС) в свою очередь подразделяются на районные (ГРЭС) и центральные (ЦЭС). ГРЭС - самые мощные и, значит, потребляют значительное количество минерального топлива, являются зависимыми от транспортных издержек по перевозке топлива и поэтому их выгодно размещать у сырьевых баз (буроугольные разрезы, НПЗ, ГПЗ). ЦЭС – строятся на площадках энергоемких промышленных предприятий, т.е. непосредственно у пиков энергопотребления, с целью снижения расходов предприятий.

Теплофикационные электростанции (ТЭЦ) строят только в крупных городах, поскольку передача теплоносителя (горячей воды) может осуществляться в радиусе не более 10 – 15 км от станции. Например, Челябинск обслуживается тремя ТЭЦ. В стране построено и эксплуатируется более 260 тыс. км теплосетей.

В малых городах функцию теплоснабжения выполняют котельные установки. Их общее число приближается к 190 тыс.

Гидроэлектростанции. На территории России функционирует около 100 гидроэлектростанций (ГЭС). ГЭС характеризуются самой низкой себестоимостью вырабатываемой электроэнергии, поэтому к ним тяготеют самые энергоемкие отрасли промышленности (выплавка легких цветных металлов, производство синтетических волокон и нитей и др.).

На территории Восточной Сибири и Дальнего Востока сосредоточено 80 % технического гидроэнергопотенциала страны.

Различают такие типы ГЭС как равнинные, горные, деривационные и гидроаккумулирующие.

Самые мощные равнинные и горные ГЭС образуют каскады на крупных реках.

В состав Ангаро-Енисейского каскада входят станции: Саяно-Шушенская (6,4 млн. кВт), Красноярская (6 млн. кВт), Иркутская (4 млн. кВт), Братская (4,5 млн. кВт), Усть-Илимская (4,3 млн. кВт), сооружается Богучанксая ГЭС (4 млн. кВт).

Волжско-Камский каскад образован такими станциями как: Иваньковская, Угличская, Рыбинская, Горьковская, Чебоксарская, две Волжские (возле Самары и Волгограда), Саратовская, Камская, Воткинская, Нижнекамская.

Строительство ГЭС требует длительных сроков и значительных капиталовложений (фондоемкая отрасль). Главное их предназначение – покрытие пиковых энергонагрузок в сети.

Атомные электростанции. Всего на территории страны функционирует 10 гражданских атомных электростанций (АЭС). Каждая станция состоит из отдельных энергоблоков – реакторов. Их общее количество – 31. Помимо них для гражданских нужд также используются мощности атомных реакторов в Димитровграде (Ульяновская область) и Северске (Томская область). Первая в мире АЭС введена в эксплуатацию в 1954 году – Обнинская (Калужская область).

Ранее утверждалось, что АЭС наиболее экономичный способ энергоснабжения топливо - и энергодефицитных районов страны, но при этом забывали о том, что 75 % суммарных затрат в ядерном топливном цикле приходится на переработку и захоронение отходов, которые не брались во внимание при расчете себестоимости.

Срок службы одного атомного реактора – около 30 лет, после чего его необходимо выводить из эксплуатации. В России в гражданских целях эксплуатируются ядерные реакторы трех типов: 1) водо-водяные (ВВЭР), 2) большой мощности канальные (РБМК) – с 1986 года именуются реакторами «чернобыльского типа», 3) на быстрых нейтронах (БН). Реакторы ВВЭР и РБМК в качестве топлива используют низкообогащенный уран (изотоп 235 U). Реакторы БН в качестве топлива используют 238 U. В стране пока только одна станция использует передовую технологию БН – Белоярская (Свердловская область, город Заречный).

АЭС используют транспортабельное топливо – тепловыделяющие элементы из низкообогащенного урана. При расходе 1 кг урана выделяется теплота, эквивалентная сжиганию 2.5 тыс. т лучшего угля. Эта особенность исключает зависимость АЭС от сырьевого фактора и обеспечивает маневренность в их размещении.

Их целесообразно строить в первую очередь в тех районах страны, где замыкающие затраты на энергоснабжение посредством ТЭС наиболее высоки, а предпосылок для создания мощных каскадов ГЭС практически нет (Северо-Запад, Центр, Юг).

АЭС ориентируются на потребителей, расположенных в районах с напряженным топливно-энергетическим балансом или в местах, где выявленные ресурсы минерального топлива ограничены. Площадки под их строительство отводятся не ближе 30 км от крупных городов, в сейсмически спокойных зонах. Например, Ленинградская АЭС, размещена на берегу Финского залива у города Сосновый Бор.

Предполагается, что к 2025 году доля вырабатываемой на АЭС энергии вырастет до 22 %. Для этого в стране необходимо построить около 40 новых энергоблоков. Некоторые из старых проектов уже реанимированы. В частности возобновлено строительство Южноуральской АЭС. Обсуждается идея строительства плавучих АЭС для электроснабжения прибрежных районов Российской Зоны Севера.

 




Поделиться с друзьями:


Дата добавления: 2015-04-23; Просмотров: 607; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.