Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Репарация генетического материала. Фотореактивация. Темновая репарация. Мутации, связанные с нарушением




Мутационная изменчивость. Классификация мутаций. Мутация в половых и соматических клетках. Понятие о

Модификационная изменчивость. Норма реакции генетически детермированных признаков. Фенокопии. Адаптивный характер модификации. Роль наследственности и среды в развитии, обучении и воспитании человека.

Генетическая инженерия, ее задачи, методы, перспективы использования. Спонтанные и индуцированные мутации. Мутагенез и канцерогенез. Генетическая опасность загрязнения окружающей среды. Меры защиты.

Генетическая инженерия. Генетическая (генная) инженерия - область молекулярной биологии и генетики, ставящая своей задачей конструирование генетических структур по заранее намеченному плану, создание организмов с новой генетической программой. Возникновение генетической инженерии стало возможным благодаря синтезу идей и методов молекулярной биологии, генетики, биохимии и микробиологии. Основные методы генной инженерии были разработаны в 60-70-х годах нашего века. Они включают три основных этапа:

• получение генетического материала (искусственный синтез гена или выделение природных генов);

• включение этих генов в автономно реплицирующуюся генетическую структуру (векторную молекулу) и создание рекомбинантной молекулы ДНК;

• введение векторной молекулы (с включенным в нее геном) в клетку-реципиент, где она встраивается в хромосомный аппарат. Экспериментальный перенос генов в другой геном называется ТРАНСГЕНЕЗОМ.

Для ХИМИЧЕСКОГО СИНТЕЗА необходимо иметь полностью расшифрованную последовательность нуклеотидов. Впервые в 1970 году индийским ученым Корана Г. (США) был осуществлен искусственный синтез гена. Он синтезировал последовательность нуклеотидов (77) в ДНК, специфическую для структуры гена транспортной аланиновой РНК в клетках пекарских дрожжей. Более двух лет затратили на этот синтез гена. Последовательность нуклеотидов в нити ДНК определялась по информационной РНК. Для транскрипция необходимо, чтобы фермент РНК-полимераза "узнавала" место промотора, где локализована точка инициации синтеза, и в этом месте "садилась" на матрицу.

Однако, химическим путем можно синтезировать небольшие по размеру гены прокариот, синтез сложных генов эукариот, состоящих из тысячи и более нуклеотидов, путем химического синтеза пока создать не удается.

Кроме того, химический синтез очень трудоемкий и для генной инженерии в настоящее время практически не используется. Наиболее успешным оказался ФЕРМЕНТАТИВНЫЙ СИНТЕЗ гена.

Центральная догма молекулярной генетики утверждает, что считка информации происходит в направлении: ДНК → РНК → белок. Но ряд авторов, начиная с 1948 года, выступали с соображениями, что РНК может быть предшественником ДНК. Подобное наблюдается у онкогенных РНК - содержащих вирусов. С РНК-вируса, попавшего в клетку, синтезируется провирус (ДНК - копия РНК) с помощью фермента обратная транскриптаза (ревертаза), а сам процесс называется обратной транскрипцией. Этот фермент был открыт в 1970 году Теминым, Мазутани, Балтимором.

Ген, полученный путем ферментативного синтеза, может функционировать в бактериальной клетке, на нем синтезируется иРНК, а затем белок, таким путем под руководством академика В.А.Энгельгардга был получен ген, определяющий синтез фермента галактозидазы, введенный в фаг.

Следовательно, если иметь в пробирке выделенные молекулы иРНК, принадлежащие данному гену, то он может быть синтезирован с помощью фермента. Матрицей служит иРНК, ее выделяют, добавляют нуклеотиды, затравку, ферменты.

 

Важным достижением генной инженерии является синтез гена соматостатина, этот ген функционирует в микробной клетке.

Спонтанные и индуцированные мутации. Мутации делят на спонтанные и инду­цированные. Спонтанными называют мутации, возникшие под влиянием не­известных природных факторов, чаще всего как результат ошибок при ре­пликации ДНК. Индуцированные му­тации вызваны специально направлен­ными воздействиями, повышающими мутационный процесс.

Наследственные различия у микро­организмов, растений, животных и человека, в том числе наследственные болезни и уродства, появились в ре­зультате мутаций. Если спонтанные мутации — явление довольно редкое (частота—10-6—10-7), то применение мутагенных агентов значительно повы­шает частоту их.

Факторы, способные индуцировать мутационный эффект, получили назва­ние мутагенных. Установлено, что любые факторы внешней и внутренней среды, которые могут нарушить гомео-стаз, способны вызвать мутацию. Глав­нейшими мутагенами являются: хими­ческие соединения, различные виды излучений, биологические факторы.

Мутакинез. Химический мутагенез. Еще в 1934 г. М. Е. Лобашев отметил, что химические мутагены должны об­ладать тремя качествами: высокой про­никающей способностью; свойством изменять коллоидное состояние хро­мосом; определенным действием на со­стояние гена или хромосомы.

Приоритет открытия химических му­тагенов принадлежит советским иссле­дователям. В 1933 г. В. В. Сахаров получил мутации путем действия йода, в 1934 г. М. Е. Лобашев — применяя аммоний. В 1946 г. советский генетик И. А. Рапопорт обнаружил сильное мутагенное действие формалина и эти-ленимина, а английская исследователь­ница Ш. Ауэрбах — иприта. Позже были открыты многие другие химиче­ские мутагены. Некоторые из них усиливают мутационный эффект в сотни раз по сравнению со спонтанным; они получили название супермутагенов (лат. зирег — сверх), т. е. оказываю­щих сверхмутагенное действие. Мно­гие из супермутагенов, в частности использованные для получения вы­сокоактивных штаммов микроорганиз­мов — продуцентов антибиотиков, от­крыл И. А. Рапопорт.

Химические мутагены используются для получения мутантных форм плес­невых грибов, актиномицетов, бакте­рий, вырабатывающих в большом коли­честве пенициллин, стрептомицин и другие антибиотики. Химическими мутагенами повышена ферментативная активность грибов, применяемых для спиртового брожения. Разработаны де­сятки перспективных мутаций куль­турных растений.

В экспериментах мутации индуци­руются разнообразными химическими агентами. Этот факт свидетельствует о том, что, по-видимому, и в естествен­ных условиях подобные факторы так­же служат причиной появления спон­танных мутаций у различных химиче­ских веществ и даже некоторых лекар­ственных препаратов. Это говорит о необходимости изучения мутагенного действия новых фармакологических ве­ществ, пестицидов и других химиче­ских соединений, все шире используе­мых в медицине и сельском хозяйстве.

Радиационный мутагенез. Индуцированные мутации, вызванные облучением, впервые были экспери­ментально получены советскими уче­ными Г. А. Надсоном и Г. С. Фи­липповым, которые в 1925 г. наблю­дали мутационный эффект на дрожжах после воздействия на них ионизирую­щей радиации. В 1927 г. американ­ский генетик Г. Меллер показал, что рентгеновы лучи могут вызвать мно­жество мутаций у дрозофилы, а позже мутагенное воздействие рентгеновых лучей подтвердилось на многих объек­тах. В дальнейшем было установлено, что наследственные изменения обуслов­ливаются также всеми другими ви­дами проникающей радиации.

Для искусственных мутаций часто используются гамма-лучи, источником которых в лабораториях обычно явля­ется радиоактивный кобальт (60Со). В последнее время для индуцирования мутаций все шире применяются ней­троны, обладающие большой прони­кающей способностью. При этом возни­кают как разрывы хромосом, так и точ-ковые мутации. Изучение мутаций, связанных с действием нейтронов и гамма-лучей, представляет собой ин­терес по двум причинам. Во-первых, установлено, что генетические послед­ствия атомных взрывов связаны преж­де всего с мутагенным влиянием иони­зирующей радиации. Во-вторых, фи­зические методы мутагенеза применя­ются для получения ценных в хозяй­ственном отношении сортов культур­ных растений. Так, советские исследо­ватели, используя методы воздействия физическими факторами, вывели стой­кие к ряду грибных заболеваний и бо­лее урожайные сорта пшеницы и ячменя.

Одним из самых опасных послед­ствий облучения является образова­ние свободных радикалов ОН или НО2 из находящейся в тканях воды. Эти радикалы обладают высокой реактив­ной способностью и могут расщеплять многие органические вещества, в том числе нуклеиновые кислоты.

Другие мутагенные фак­торы. Первые исследователи мута­ционного процесса недооценивали роль факторов внешней среды в явлениях изменчивости. В начале XX в. неко­торые исследователи даже считали, что внешние воздействия не имеют ни­какого значения для процесса мутиро­вания. В дальнейшем зги представле­ния были отвергнуты благодаря искус­ственному воспроизведению мутаций с помощью различных факторов внеш­ней среды. В настоящее время можно предполагать, что нет таких факторов внешней среды, которое в какой-то мере не сказались бы на изменении на­следственных свойств. Из фичических факторов на ряде объектов установлено мутагенное действие ультрафиолето­вых лучей, фотонов света и температу­ры. Повышение температуры увеличи­вает число мутаций. Однако темпера­тура относится к числу тех агентов, в отношении которых у организмов существуют защитные механизмы, вследствие чего гомеостаз нарушается незначительно. В связи с этим темпе­ратурные воздействия дают небольшой мутагенный эффект по сравнению с другими агентами.

Найдены биологические мутагены, к которым относятся вирусы и токсины ряда организмов, особенно плесневых грибов. В 1958 г. советский генетик С. И. Алиханян показал, что вирусы вызывают мутации У актиномицетов. Оказалось так­же, что вирусы вызывают мутации у растений и животных При этом му­тагенным действием опладают не только те вирусы, к которым восприим­чив организм, в котором они размножаются и вызывают заболевание, но и непатогенные для него вирусы. Таким образом, роль вирусов в природе заключается в том, что они являются не только возбудителями многих болезней растений, животных и чел, но и виновниками многих спонтанных мутаций.

 

 

27. Формы изменчивости: комбинативная, мутационная. Их значение в онтогенезе и эволюции. Хромосомные мутации:

делеция, дубликация, инверсия, транслокация. Полиплоидия, гетероплоидия, механизм их образования.

Комбинативная изменчивость. Комбинативная изменчи­вость. Комбинативная изменчивость связана с получением новых сочетаний генов в генотипе. Достигается это в результате трех процессов: а) незави­симого расхождения хромосом при мей-озе, б) случайного их сочетания при оплодотворении, в) рекомбинации ге­нов благодаря кроссинговеру; сами наследственные факторы (гены) при этом не изменяются, но возникают их новые сочетания, что приводит к по­явлению организмов с другим геноти­пом и фенотипом.

Дарвин установил, что многие сорта культурных растений и породы домаш­них животных были созданы благода­ря гибридизации существовавших ра­нее пород. Он придавал большое зна­чение комбинативной изменчивости, считая, что наряду с отбором ей при­надлежит важная роль в получении новых форм как в природе, так и в хо­зяйстве человека.

Комбинативная изменчивость широ­ко распространена в природе. У микро­организмов, размножающихся бес­полым путем, появились своеобразные механизмы (трансформация и транс-дукция), приводящие к появлению ком­бинативной изменчивости. Все это говорит о большой значимости комби­нативной изменчивости для эволюции.

Комбинативная изменчивость рас­пространена в природе и может играть роль даже в видообразовании. Описа­ны виды цветковых растений и рыб, совмещающие признаки двух близких ныне существующих видов. Однако воз­никновение видов в результате только гибридизации — явление редкое.

К комбинативной изменчивости при­мыкает явление гетерозиса. Гетерозис (гр. heteroisis — видоизменение, пре­вращение), или «гибридная сила», мо­жет наблюдаться в первом поколении при гибридизации между представите­лями различных видов или сортов. Проявляется он в форме повышенной жизнеспособности, увеличения роста и других особенностей. Ярко выражен гетерозис у кукурузы, гибридизация которой дает значительный экономиче­ский эффект.

Мутационная изменчивость. Мутацией (лат. mutatio—перемена) называется изменение, обусловленное реорганизацией воспроизводящих струк­тур, изменением ее генетического аппа­рата. Этим мутации резко отличаются от модификаций, не затрагивающих гено­типа особи. Мутации возникают внезап­но, скачкообразно, что иногда резко отличает организм от исходной формы.

Растениеводам и животноводам та­кие изменения были известны давно. Ряд наследственных изменений описал Дарвин в труде «Изменение домашних животных и культурных растений» (1868). Мутационной изменчивости по­святил свои работы С. И. Коржинский (1899) и Г. де Фриз (1901). Последне­му принадлежит термин «мутация».

В настоящее время известны мутации у всех классов животных, растений и вирусов. Существует много мутаций и у человека. Именно мутациями обус­ловлен полиморфизм человеческих по­пуляций: различная пигментация ко­жи, волос, окраска глаз, форма носа, ушей, подбородка и т. д. В результа­те мутаций появляются и наследствен­ные аномалии в строении тела, и на­следственные болезни человека.С му­тационной изменчивостью связана эво­люция— процесс образования новых видов, сортов и пород. По характеру изменений генетического аппарата различают мутации, обусловленные: а) изменением числа хромосом (ге­номные) б) изменением структуры хро­мосом (хромосомные аберрации); в) из­менением молекулярной структуры ге­на (генные, или точковые мутации).

Хромосомные мутации. Возни­кают и результате перестройки хромо­сом. Они являются следствием раз­рыва хромосомы, приводящего к обра­зованию фрагментов, которые в даль­нейшем воссоединяются, но при этом нормальное строение хромосомы не восстанавливается. Различают четыре основных типа хромосомных аберра­ций: нехватки, удвоения (дупликации), инверсии, транслокации.

Нехватки возникают вслед­ствие потери хромосомой того или иного участка. Нехватки в средней части хро­мосомы приводят организм к гибели, утрата незначительных участков вы­зывает изменение наследственных свойств. Так, при нехватке участка одной из хромосом у кукурузы ее про­ростки лишены хлорофилла.

Удвоение (дупликация) связано с включением лишнего, дуб­лирующего участка хромосомы. Это также ведет к проявлению новых при­знаков. Так, у дрозофилы ген полоско-видных глаз (вмэсто круглых) обус­ловлен удвоением участка в одной из хромосом.

Инверсии наблюдаются при разрыве хромосомы и переворачива­нии оторвавшегося участка на 180°. Если разрыв произошел в одном месте, оторвавшийся фрагмент прикрепляется к хромосоме противоположным кон­цом, если же в двух местах, то средний фрагмент, перевернувшись, прикреп­ляется к местам разрыва, но другими концами. Н. П. Дубинин установил, что инверсии широко распространены, в частности у дрозофил, взятых из природы, и, по-видимому, могут иг­рать роль в эволюции видов.

Транслокации возникают в тех случаях. когаа участок хромосомы из одной пары прикрепляется к не­гомологичной хромосоме, т. е. хромо­соме из другой пары Транслокачия участка одной из хромосом (21-й) известна у человека; оно может быть причиной болезни Дауна Большинство крупных хромосомных аберраций в зи­готах у человека приводит к тяжелым аномалиям, несовместимым с жизнью, либо к гибели зародышей еще во время внутриутробного развития.

Полиплоидия. Это увеличение диплоидного числа хромосом путем добавления целых хромосомных набо­ров в результате нарушения мейоза. Вспомним, что половые клетки име­ют гаплоидный набор хромосом (л), а для зигот и всех соматических клеток характерен диплоидный набор (2л). У полиплоидных форм отмечается увели­чение числа хромосом, кратное гапло­идному набору: Зn — триплоид, 4n — тетраплоид, 5n — пентаплоид, 6n — гексаплоид и т. д. По-видимому, эво­люция ряда цветковых растений шла путем полиплоидизации. Культурные растения в своем большинстве— поли­плоиды.

Формы, возникающие в результате умножения хромосом одного генома, носят название автоплоидных. Одна­ко известна и другая форма полиплои­дии — аллоплоидия, при которой умно­жается число хромосом двух разных геномов. Аллополиплоиды искусствен­но получены при гибридизации ряда видов растений и животных. Так, Г. Д. Карпеченко создал аллополиплоидный гибрид редьки и капусты. В данном случае каждый исходный вид имеет 18 хромосом, а гибридный — 36, так как является аллотетраплоидом.

Полиплоидные формы известны и у животных. По-видимому, эволюция некоторых групп простейших, в част­ности инфузорий и радиолярий, шла также путем полиплоидизации. У не­которых многоклеточных животных полиплоидные формы удалось создать искусственно (тутовый шелкопряд).

Гетероплоидия. В резуль­тате нарушения мейоза и митоза чис­ло хромосом может изменяться и ста­новиться не кратным гаплоидному набору. Явление, когда какая-либо из хромосом, вместо того чтобы быть пар­ной, оказывается в тройном числе, получило название трисомии. Если наблюдается трисомия по одной хромо­соме, то такой организм называется трисомиком и его хромосомный набор равен 2n + 1. Трисомия может быть по любой из хромосом и даже по нескольким. Двойной трисомик имеет набор хромосом 2n + 3 тройной — 2лn + 3 и т.

Явление трисомии впервые описано у дурмана. Известна трисомня и у дру­гих видов растений и животных, а также у человека. Трисомиками явля­ются, например, люди с синдромом Дауна. Трисомики чаще всего либо нежизнеспособны, либо отличаются пониженной жизнеспособностью и ря­дом патологических признаков.

Явление, противоположное трисо­мии, т. е. утрата одной хромосомы из пары в диплоидном наборе, называет­ся моносомией, организм же—моносо­миком; его кариотип — 2n— 1. При отсутствии двух различных хромосом организм является двойным моносо­миком (2n — 2). Если из диплоидного набора выпадают обе гомологические хромосомы, организм называется ну-лисомиком. Он, как правило, нежизне­способен.

Из сказанного видно, что анэуплои­дия, т. е. нарушение нормального чис­ла хромосом, приводит к изменениям в строении и к снижению жизнеспособ­ности организма. Чем больше наруше­ние, тем ниже жизнеспособность. У человека нарушение сбалансирован­ного набора хромосом елечет засобой болезненные состояния, известные под общим названием хромосомных бо­лезней.

 

 

Модификационная изменчивость. Модифи­кациями называются фенотипические изменения, возникающие под влиянием условий среды. Размах модифика-ционной изменчивости ограничен нор­мой реакции. Возникшее конкретное модификационное изменение признака не наследуется, но диапазон модифика-ционной изменчивости, норма реакции, генетически обусловлен и наследуется. Модификационные изменения не вле­кут за собой изменений генотипа.

Норма реакции, лежащая в основе модификационной изменчивости, скла­дывалась исторически в результате естественного отбора. В силу этого модификационная изменчивость, как правило, целесообразна. Она соответ­ствует условиям обитания, является приспособительной.

Модификационной изменчивости под­вержены такие признаки, как рост животных и растений, их масса, ок­раска и т. д. Возникновение модифи-кационных изменений связано с тем, что условия среды воздействуют на фер­ментативные реакции, протекающие в развивающемся организме, и в извест­ной мере изменяют их течение. К модифика­ционной изменчивости следует отнести также фенокопии. Они обусловлены тем, что в процессе развития под влиянием внешних факторов признак, зависящий от определенного генотипа, может измениться; при этом копируют­ся признаки, характерные для другого генотипа. В развитии фенокопии мо­гут играть роль разнообразные факто­ры среды — климатические, физиче­ские, химические, биологические. Не­которые инфекционные болезни (крас­нуха, токсоплазмоз), которые перенес­ла мать, также могут стать причиной фенокопии ряда наследственных бо­лезней и пороков развития. Наличие фенокопии нередко затрудняет поста­новку диагноза, поэтому существова­ние их врач всегда должен иметь в виду.

Особую группу модификационной изменчивости составляют длительные модификации. Эти изменения возника­ют под влиянием внешних условий. Так, при воздействии высокой или пониженной температуры на куколок колорадского картофельного жука ок­раска взрослых животных изменяется. Этот признак держится в нескольких поколениях, а затем возвращается прежняя окраска. Указанный при­знак передается потомкам лишь под воздействием температуры на женские особи и не передается, если влиянию фактора подвергались только самцы. Следовательно, длительные модифика­ции наследуются по типу цитоплаЗма-тической наследственности. По-види­мому, под влиянием внешнего фактора происходят изменения в тех частях цитоплазмы, которые затем могут ауто-репроду цироваться.

Фенокопии. В патологии человека большую роль играют также фенокопии, сходные по проявлению с генетически обуслов­ленными изменениями. Так, если мать во время беременности болела коре­вой краснухой, то у ребенка часто бы­вает врожденное уродство — расще­лина губы и неба. Это пример феноко-пии, так как признак развивается при отсутствии мутантного гена, опреде­ляющего данную аномалию. Понятно, что в этом случае признак не будет на­следоваться.

Организм матери представляет собой среду, в которой развивается плод, и неблагоприятное воздействие каких-ли­бо факторов (физических, химических, биологических) может вызвать нару­шения на этапе реализации генетиче­ской информации при нормальном ге­нотипе. Причиной фенокопии — вро­жденных пороков развития (уродств)— могут быть и другие заболевания (ток-соплазмоз, сифилис). Фенокопии

 

могут развиваться в разные периоды жизни под влиянием различных повреждаю­щих факторов. Так, у человека бывают судорожные припадки, напоминающие наследственно обусловленную эпилеп­сию, однако причиной их может быть воспалительный процесс в мозге или опухоль. При недостатке йода в окру­жающей среде развиваются проявле­ния кретинизма, напоминающие на­следственные. Некоторые поражения печени копируют наследственное забо­левание — болезнь Коновалова — Вильсона, обычный детский рахит, воз­никающий от недостатка витамина О, по своему проявлению сходен с наслед­ственной витамииоустойчивой формой рахита.

Обычно у новорожденных в течение первых дней бывают проявления жел­тухи. Это нормальное физиологическое явление, связанное с распадом избытка эритроцитов — у плода их больше вследствие меньшей обеспеченности кис­лородом. В какой-то период эти про­явления могут напоминать патологиче­ское явление, связанное с наследствен­но-обусловленной несовместимостью крови матери и ребенка по резус-фактору.

Существование гено- и фенокопии ус­ложняет постановку диагноза. Врач должен иметь в виду, что некоторые сходные заболевания могут иметь как наследственную (эндогенную), так и ненаследственную (экзогенную) приро­ду. Анализ и установление природы заболевания составляют важнейшую задачу для прогноза в отношении воз­можности рождения в будущем здоро­вого ребенка.

 

 

хромосомных и генных болезнях.

Мутационная изменчивость. Мутацией (лат. mutatio—перемена) называется изменение, обусловленное реорганизацией воспроизводящих струк­тур, изменением ее генетического аппа­рата. Этим мутации резко отличаются от модификаций, не затрагивающих гено­типа особи. Мутации возникают внезап­но, скачкообразно, что иногда резко отличает организм от исходной формы.

Растениеводам и животноводам та­кие изменения были известны давно. Ряд наследственных изменений описал Дарвин в труде «Изменение домашних животных и культурных растений» (1868). Мутационной изменчивости по­святил свои работы С. И. Коржинский (1899) и Г. де Фриз (1901). Последне­му принадлежит термин «мутация».

В настоящее время известны мутации у всех классов животных, растений и вирусов. Существует много мутаций и у человека. Именно мутациями обус­ловлен полиморфизм человеческих по­пуляций: различная пигментация ко­жи, волос, окраска глаз, форма носа, ушей, подбородка и т. д. В результа­те мутаций появляются и наследствен­ные аномалии в строении тела, и на­следственные болезни человека.С му­тационной изменчивостью связана эво­люция— процесс образования новых видов, сортов и пород. По характеру изменений генетического аппарата различают мутации, обусловленные: а) изменением числа хромосом (ге­номные) б) изменением структуры хро­мосом (хромосомные аберрации); в) из­менением молекулярной структуры ге­на (генные, или точковые мутации).

Геномная изменчивость. Гапло­идный набор хромосом, а также совокупность генов, находящихся в гаплоид­ном наборе хромосом, названы гено­мом. Мутации, связанные с изменением числа хромосом, получили название геномных. К ним относятся полиплои­дия и гетероплоидия (анэуплоидия).

Полиплоидия. Это увеличение диплоидного числа хромосом путем добавления целых хромосомных набо­ров в результате нарушения мейоза. Вспомним, что половые клетки име­ют гаплоидный набор хромосом (л), а для зигот и всех соматических клеток характерен диплоидный набор (2л). У полиплоидных форм отмечается увели­чение числа хромосом, кратное гапло­идному набору: Зn — триплоид, 4n — тетраплоид, 5n — пентаплоид, 6n — гексаплоид и т. д. По-видимому, эво­люция ряда цветковых растений шла путем полиплоидизации. Культурные растения в своем большинстве— поли­плоиды.

Формы, возникающие в результате умножения хромосом одного генома, носят название автоплоидных. Одна­ко известна и другая форма полиплои­дии — аллоплоидия, при которой умно­жается число хромосом двух разных геномов. Аллополиплоиды искусствен­но получены при гибридизации ряда видов растений и животных. Так, Г. Д. Карпеченко создал аллополиплоидный гибрид редьки и капусты. В данном случае каждый исходный вид имеет 18 хромосом, а гибридный — 36, так как является аллотетраплоидом.

Полиплоидные формы известны и у животных. По-видимому, эволюция некоторых групп простейших, в част­ности инфузорий и радиолярий, шла также путем полиплоидизации. У не­которых многоклеточных животных полиплоидные формы удалось создать искусственно (тутовый шелкопряд).

Гетероплоидия. В резуль­тате нарушения мейоза и митоза чис­ло хромосом может изменяться и ста­новиться не кратным гаплоидному набору. Явление, когда какая-либо из хромосом, вместо того чтобы быть пар­ной, оказывается в тройном числе, получило название трисомии. Если наблюдается трисомия по одной хромо­соме, то такой организм называется трисомиком и его хромосомный набор равен 2n + 1. Трисомия может быть по любой из хромосом и даже по нескольким. Двойной трисомик имеет набор хромосом 2n + 3 тройной — 2лn + 3 и т.

Явление трисомии впервые описано у дурмана. Известна трисомня и у дру­гих видов растений и животных, а также у человека. Трисомиками явля­ются, например, люди с синдромом Дауна. Трисомики чаще всего либо нежизнеспособны, либо отличаются пониженной жизнеспособностью и ря­дом патологических признаков.

Явление, противоположное трисо­мии, т. е. утрата одной хромосомы из пары в диплоидном наборе, называет­ся моносомией, организм же—моносо­миком; его кариотип — 2n— 1. При отсутствии двух различных хромосом организм является двойным моносо­миком (2n — 2). Если из диплоидного набора выпадают обе гомологические хромосомы, организм называется ну-лисомиком. Он, как правило, нежизне­способен.

Из сказанного видно, что анэуплои­дия, т. е. нарушение нормального чис­ла хромосом, приводит к изменениям в строении и к снижению жизнеспособ­ности организма. Чем больше наруше­ние, тем ниже жизнеспособность. У человека нарушение сбалансирован­ного набора хромосом елечет засобой болезненные состояния, известные под общим названием хромосомных бо­лезней.

Хромосомные абберации. Возни­кают и результате перестройки хромо­сом. Они являются следствием раз­рыва хромосомы, приводящего к обра­зованию фрагментов, которые в даль­нейшем воссоединяются, но при этом нормальное строение хромосомы не восстанавливается. Различают четыре основных типа хромосомных аберра­ций: нехватки, удвоения (дупликации), инверсии, транслокации.

Нехватки возникают вслед­ствие потери хромосомой того или иного участка. Нехватки в средней части хро­мосомы приводят организм к гибели, утрата незначительных участков вы­зывает изменение наследственных свойств. Так, при нехватке участка одной из хромосом у кукурузы ее про­ростки лишены хлорофилла.

Удвоение (дупликация) связано с включением лишнего, дуб­лирующего участка хромосомы. Это также ведет к проявлению новых при­знаков. Так, у дрозофилы ген полоско-видных глаз (вмэсто круглых) обус­ловлен удвоением участка в одной из хромосом.

Инверсии наблюдаются при разрыве хромосомы и переворачива­нии оторвавшегося участка на 180°. Если разрыв произошел в одном месте, оторвавшийся фрагмент прикрепляется к хромосоме противоположным кон­цом, если же в двух местах, то средний фрагмент, перевернувшись, прикреп­ляется к местам разрыва, но другими концами. Н. П. Дубинин установил, что инверсии широко распространены, в частности у дрозофил, взятых из природы, и, по-видимому, могут иг­рать роль в эволюции видов.

Транслокации возникают в тех случаях. когаа участок хромосомы из одной пары прикрепляется к не­гомологичной хромосоме, т. е. хромо­соме из другой пары Транслокачия участка одной из хромосом (21-й) известна у человека; оно может быть причиной болезни Дауна Большинство крупных хромосомных аберраций в зи­готах у человека приводит к тяжелым аномалиям, несовместимым с жизнью, либо к гибели зародышей еще во время внутриутробного развития.

Генные мутации. затрагивают структуру самого гена. Мутации могут изменять участ­ки молекулы ДНК различной длины. Наименьший участок, изменение кото­рого приводит к появлению мутации, назван мутоном. Его может соста­вить только одна пара нуклеотидов. Изменение последовательности нук­леотидов в ДНК обусловливает изме­нение в последовательности триплетов и е конечном итоге изменяет программу синтеза белка. Следует помнить, что нарушения в структуре ДНК приводят к мутациям только тогда, когда не осуществляется репарация.

 

Большинство мутаций, с которыми связаны эволюция органического мира и селекция,— трансгенации. Вот не­сколько примеров мутаций, широко используемых при изучении законо­мерностей наследственности. У дрозо­филы, имеющей в норме красные глаза, появились мутанты с глазами белого цвета, абрикосового цвета, цвета сло­новой кости и т. д. Так возникла боль­шая серия аллелей, включающая более 10 мутантных изменений окраски глаз.

Альбинизм животных — типичная генная мутация В результате мутации гороха появились растения с Желтыми и зеленымисеменами, с гладкими и морщинистыми зернами, белыми и пурпурными цветками и т. д. Гены, которые возникли в результате мутации одного локуса как известно, являются алле.1ьными. Появление мутации для каждого генного локуса — событие довольно редкое. Различные аллели имеют неодинаковую частоту мутиро­вания. Так, у человека мутация, при­водящая к карликовости, встречается в 5—13 гаметах на миллион, мышечной дистрофии (мышечная слабость) в 8—11, микроцефалии (недоразвитие мозга) — в 27, ретинобластомы (опу­холь сетчатки глаза) — в 3—12 гаме­тах на миллион и т. д. Для каждой аллели частота мутирования более или менее постоянна и колеблется в пределах 10-5—10-7. Однако ввиду огромного числа генов у каждого орга­низма мутации довольно часты. Так, у высших растений и животных до 10 % гамет несут какие-либо новые, спонтанно возникшие изменения.

Соматические мутации. Мутации возникают в лю­бых клетках, поэтому их делят на сома­тические и генеративные. Биологиче­ское значение их неравноценно и свя­зано с характером размножения орга­низмов.

При половом размножении призна­ки, появившиеся в результате сомати­ческих мутаций, потомкам не передают­ся и в процессе эволюции никакой роли не играют. Однако в- индивидуальном развитии они могут влиять на форми­рование признака: чем в более ранней стадии развития возникнет соматиче­ская мутация, тем больше участок ткани, несущий данную мутацию. Такие особи называются мозаиками. Например, мозаиками являются люди, у которых цвет одного глаза отличает­ся от цвета другого, или животные опре­деленной масти, у которых на теле по­являются пятна другого цвета, и т. п. Не исключено, что соматические мута­ции, влияющие на метаболизм, явля­ются одной из причин старения и зло­качественных новообразований.

Если мутация происходит в клет­ках, из которых развиваются гаметы, или в половой клетке, то новый при­знак проявится в ближайшем или последующих поколениях. Наблюде­ния показывают, что многие мутации вредны для организма. Это объясняет­ся тем, что функционирование каждого органа сбалансировано в отношении как других органов, так и внешней среды. Нарушение существующего рав­новесия обычно ведет к снижению жизнедеятельности или гибели орга­низма. Мутации, снижающие жизне­деятельность, называются полулеталь­ными.. Мутации, не совместимые с жизнью, носят название летальных (лат. letalis — смертельный). Однако некоторая часть мутаций может ока­заться полезной. Такие мутации явля­ются материалом для прогрессивной эволюции, а также для селекции цен­ных пород домашних животных и культурных растений. По-видимому, чаще всего «полезные» мутации в со­четании с отбором лежат в основе эволюции.

 

 

репарации и их роль в патологии.

Репарация генетического материала. В процессе жизнедеятельности под действием различных факторов в ДНК возникают повреждения, некоторые из них могут ликвидироваться благодаря репарации ДНК. Механизм репарации ДНК изучен на кишечной палочке. При воздействии на культуру кишечной палочки ультрафиолетовыми лучами на нити ДНК возникают повреждения - димеры (цитозин-цитозин, цитозин-тимин, чаще всего возникают димеры тимина, соединенные через атомы углерода и представляющие собой наиболее стойкие соединения). Димеры тимина приводят культуру кишечной палочки к гибели, если ее поместить в темноту. На свету димеры тимина расщепляются под действием фермента на два тимина, тем самым, восстанавливая структуру ДНК, это явление называется световая фотореактивация. Исправляются повреждения, возникшие под действием ультрафиолетовых лучей. Повреждения, возникшие под влиянием других факторов (ионизирующая радиация, химические вещества и др.) исправляется в результате темновой фазы репарации. Она осуществляется в 5 этапов:

1. Фермент эндонуклеаза надрезает цепочку ДНК в месте возникновения повреждения. Фермент нуклеаза вырезает поврежденный участок,

2. Фермент экзонуклеаза расширяет брешь.

3. ДНК-полимераза латает брешь, синтезируя участок ДНК комплементарно неповрежденной цепочке.

4. Ферменты лигазы сшивают вновь построенный участок со старым, и целостность ДНК восстанавливается.

Темновая репарация происходит во всех клетках на всех фазах жизненного цикла. У бактерий восстанавливается до 95% повреждений.

Темновая репарация обнаружена у высших организмов в культуре тканей. У человека известны заболевания, связанные с возникновением мутаций в генах, детерминирующих ферменты темновой репарации. В настоящее время известно около 10 наследственных заболеваний с нарушением репарационных процессов в ДНК.

Пигментная ксеродерма - группа заболеваний, при которых отмечается повышенная чувствительность кожи к солнечным лучам (покраснение. Пигментация, изъязвления, злокачественные образования). Это рецессивно аутосомное заболевание. Фибробласты кожи больных людей более чувствительны к ультрафиолетовым лучам, чем фибробласты здоровых людей. Это связано с тем, что они обладают пониженной способностью выщеплять димеры тимина, следовательно, имеет место нарушение репарации на первом ее этапе, то есть

 

произошла мутация в гене, кодирующем синтез ультрафиолетовой специфической эндонуклеазы. Возможны нарушения и на других этапах репарации ДНК или даже на нескольких этапах.

Атаксия - телеангиоэктазия (синдром Луи Бара) - прогрессирующая атаксия мозжечка с нарушением координации движений, телеангиоэктазия склер. В этом случае сильно запаздывает второй этап репарации - удаление поврежденных оснований молекулы ДНК.

Панцитопения при гипо- и апластических анемиях. Поражены все ростки костного мозга. При этом заболевании нарушен третий этап темновой репарации – синтез экзонуклеазы, завершающей вырезание поврежденного участка ДНК.

Синдром Блума - сочетание недоразвития скелета, гипофизарной карликовости, гипогонадизма с врожденной телеангиоэктатической эритермой лица, участками гиперкератоза и гиперпигментации на туловище. Эти аномалии связаны с нарушением пострепликативного восстановления - 4, 5 этапов репарации.

На нити ДНК в структуре гена могут возникнуть и нерепарируемые изменения - генные или точковые мутации:

1. Миссенс-мутация. Связаны с заменой одного нуклеотида на другой. В результате такой мутации возникло заболевание серповидноклеточная анемия. У гомозиготных носителей этого гена в эритроцитах содержится гемоглобин S, отличающийся от нормального гемоглобина. А только одной аминокислотой, потерявшей способность легко связывается с кислородом.

2. Нонсенс-мутация. Связана с образованием бессмысленных кодонов (УАА, УАГ, УГА).

3. Мутация со "сдвигом рамки". Наблюдаются при вставке или выпадении одного нуклеотида.

Выявлены механизмы, снижающие частоту фенотипического проявления мутаций и биологические антимутагенные факторы:

1. триплетносгь и вырожденность генетического кода;

2. диплоидность (гегерозиготность) генотипа. Мутации чаще всего рецессивные и проявляются только в гомозиготном состоянии;

3. повторы генов на нити ДНК;

4. репаративные процессы;

5. метилирование ДНК (присоединение метальной группы СН3 под действием фермента метилазы) предохраняет ДНК от действия рестрикгаз (ферментов, расщепляющих ДНК). С возрастом процесс метилирования усиливается.

 

 




Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 1679; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.095 сек.