КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Недостатки. Противодействия online атакам по словарю
Замечания Противодействия online атакам по словарю Основные противодействия атакам по словарю Существует несколько способов противостоять online атакам по словарю: 1. задержка ответа (англ. delayed response): для предоставленной пары login/password сервер использует небольшую, специально сгенерированную задержку ответа Yes/no (например, не чаще одного ответа в секунду); 2. блокировка учетной записи (англ. account locking): учетная запись блокируется после нескольких (заранее установленное число) неудачных попыток ввода login/password (для примера, учетная запись блокируется на час после пяти неправильных попыток ввода пароля). 1. данные меры, в большинстве случаев, предотвращают атаку по словарю и сопутствующий взлом пароля за допустимое время; 2. данные реализации противодействия online атакам по словарю допускают долговременные блокировки пользовательских аккаунтов при правильном подборе периода атаки.
§ Преимущество алгоритма симметричного шифрования над несимметричным заключается в том, что в первый относительно легко внести изменения. § Хотя сообщения надежно шифруются, но «засвечиваются» получатель и отправитель самим фактом пересылки шифрованного сообщения.[8] § Несимметричные алгоритмы используют более длинные ключи, чем симметричные. Ниже приведена таблица, сопоставляющая длину ключа симметричного алгоритма с длиной ключа несимметричного алгоритма (RSA) с аналогичной криптостойкостью: §
§ Процесс шифрования-расшифрования с использованием пары ключей проходит на два-три порядка медленнее, чем шифрование-расшифрование того же текста симметричным алгоритмом. § В чистом виде асимметричные криптосистемы требуют существенно больших вычислительных ресурсов, потому на практике используются в сочетании с другими алгоритмами. 1. Для ЭЦП сообщение предварительно подвергается хешированию, а с помощью асимметричного ключа подписывается лишь относительно небольшой результат хеш-функции. 2. Для шифрования они используются в форме гибридных криптосистем, где большие объёмы данных шифруются симметричным шифром на сеансовом ключе, а с помощью асимметричного шифра передаётся только сам сеансовый ключ.
48. Алгоритм Diffie–Hellman и задача нахождения дискретного логарифма. Пример выработки общего ключа. Атака типа «человек посередине» на алгоритм Diffie– Hellman.
Алгори́тм Ди́ффи — Хе́ллмана (англ. Diffie-Hellman, DH) — алгоритм, позволяющий двум сторонам получить общий секретный ключ, используя незащищенный от прослушивания, но защищённый от подмены канал связи. Этот ключ может быть использован для шифрования дальнейшего обмена с помощью алгоритма симметричного шифрования. Алгоритм был впервые опубликован Уитфилдом Диффи (Whitfield Diffie) и Мартином Хеллманом в 1976 году. В 2002 году Хеллман предложил называть данный алгоритм «Диффи — Хеллмана — Меркля», признавая вклад Меркля в изобретение криптографии с открытым ключом.
Предположим, что обоим абонентам известны некоторые два числа g и p (например, они могут быть «зашиты» в программное обеспечение), которые не являются секретными и могут быть известны также другим заинтересованным лицам. Для того, чтобы создать неизвестный более никому секретный ключ, оба абонента генерируют большие случайные числа: первый абонент — число a, второй абонент — число b. Затем первый абонент вычисляет значение и пересылает его второму, а второй вычисляет и передаёт первому. Предполагается, что злоумышленник может получить оба этих значения, но не модифицировать их (то есть у него нет возможности вмешаться в процесс передачи). На втором этапе, первый абонент на основе имеющегося у него и полученного по сети вычисляет значение , а второй абонент на основе имеющегося у него и полученного по сети вычисляет значение . Как нетрудно видеть, у обоих абонентов получилось одно и то же число: . Его они и могут использовать в качестве секретного ключа, поскольку здесь злоумышленник встретится с практически неразрешимой (за разумное время) проблемой вычисления по перехваченным и , если числа выбраны достаточно большими. Алгоритм Диффи — Хеллмана, где K — итоговый общий секретный ключ При работе алгоритма, каждая сторона: 1. генерирует случайное натуральное число a — закрытый ключ 2. совместно с удалённой стороной устанавливает открытые параметры p и g (обычно значения p и g генерируются на одной стороне и передаются другой), где p является случайным простым числом g является первообразным корнем по модулю p 3. вычисляет открытый ключ A, используя преобразование над закрытым ключом A = ga mod p 4. обменивается открытыми ключами с удалённой стороной 5. вычисляет общий секретный ключ K, используя открытый ключ удаленной стороны B и свой закрытый ключ a K = Ba mod p К получается равным с обеих сторон, потому что: Ba mod p = (gb mod p)a mod p = gab mod p = (ga mod p)b mod p = Ab mod p В практических реализациях, для a и b используются числа порядка 10100 и p порядка 10300. Число g не обязано быть большим и обычно имеет значение в пределах первого десятка. [править]Пример Ева - криптоаналитик. Она читает пересылку Боба и Алисы, но не изменяет содержимого их сообщений. § s = секретный ключ. s = 2 § g = открытое простое число. g = 5 § p = открытое простое число. p = 23 § a = секретный ключ Алисы. a = 6 § A = открытый ключ Алисы. A = ga mod p = 8 § b = секретный ключ Боба. b = 15 § B = открытый ключ Боба. B = gb mod p = 19
[править]Шифрование с открытым ключом Данный алгоритм может также использоваться в качестве алгоритма шифрования с открытым ключом. В этом случае общая схема остаётся аналогичной приведённой выше, но с небольшими отличиями. Алиса не передаёт значения p, g и A Бобу напрямую, а публикует их заранее в качестве своего открытого ключа. Боб выполняет свою часть вычислений, после чего шифрует сообщение симметричным алгоритмом, используя K в качестве ключа, и передаёт шифротекст Алисе вместе со значением B. Однако такой подход не получил распространения, в этой области доминирует алгоритм RSA.
Дата добавления: 2015-04-24; Просмотров: 535; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |