Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Недостатки. Противодействия online атакам по словарю




Замечания

Противодействия online атакам по словарю

Основные противодействия атакам по словарю

Существует несколько способов противостоять online атакам по словарю:

1. задержка ответа (англ. delayed response): для предоставленной пары login/password сервер использует небольшую, специально сгенерированную задержку ответа Yes/no (например, не чаще одного ответа в секунду);

2. блокировка учетной записи (англ. account locking): учетная запись блокируется после нескольких (заранее установленное число) неудачных попыток ввода login/password (для примера, учетная запись блокируется на час после пяти неправильных попыток ввода пароля).

1. данные меры, в большинстве случаев, предотвращают атаку по словарю и сопутствующий взлом пароля за допустимое время;

2. данные реализации противодействия online атакам по словарю допускают долговременные блокировки пользовательских аккаунтов при правильном подборе периода атаки.

 

§ Преимущество алгоритма симметричного шифрования над несимметричным заключается в том, что в первый относительно легко внести изменения.

§ Хотя сообщения надежно шифруются, но «засвечиваются» получатель и отправитель самим фактом пересылки шифрованного сообщения.[8]

§ Несимметричные алгоритмы используют более длинные ключи, чем симметричные. Ниже приведена таблица, сопоставляющая длину ключа симметричного алгоритма с длиной ключа несимметричного алгоритма (RSA) с аналогичной криптостойкостью:

§

Длина симметричного ключа, бит Длина несимметричного ключа, бит
   
   
   
   
   

§ Процесс шифрования-расшифрования с использованием пары ключей проходит на два-три порядка медленнее, чем шифрование-расшифрование того же текста симметричным алгоритмом.

§ В чистом виде асимметричные криптосистемы требуют существенно больших вычислительных ресурсов, потому на практике используются в сочетании с другими алгоритмами.

1. Для ЭЦП сообщение предварительно подвергается хешированию, а с помощью асимметричного ключа подписывается лишь относительно небольшой результат хеш-функции.

2. Для шифрования они используются в форме гибридных криптосистем, где большие объёмы данных шифруются симметричным шифром на сеансовом ключе, а с помощью асимметричного шифра передаётся только сам сеансовый ключ.

 

48. Алгоритм Diffie–Hellman и задача нахождения дискретного логарифма. Пример выработки общего ключа. Атака типа «человек посередине» на алгоритм Diffie– Hellman.

 

Алгори́тм Ди́ффи — Хе́ллмана (англ. Diffie-Hellman, DH) — алгоритм, позволяющий двум сторонам получить общий секретный ключ, используя незащищенный от прослушивания, но защищённый от подмены канал связи. Этот ключ может быть использован для шифрования дальнейшего обмена с помощью алгоритма симметричного шифрования.

Алгоритм был впервые опубликован Уитфилдом Диффи (Whitfield Diffie) и Мартином Хеллманом в 1976 году.

В 2002 году Хеллман предложил называть данный алгоритм «Диффи — Хеллмана — Меркля», признавая вклад Меркля в изобретение криптографии с открытым ключом.

 

Предположим, что обоим абонентам известны некоторые два числа g и p (например, они могут быть «зашиты» в программное обеспечение), которые не являются секретными и могут быть известны также другим заинтересованным лицам. Для того, чтобы создать неизвестный более никому секретный ключ, оба абонента генерируют большие случайные числа: первый абонент — число a, второй абонент — число b. Затем первый абонент вычисляет значение и пересылает его второму, а второй вычисляет и передаёт первому. Предполагается, что злоумышленник может получить оба этих значения, но не модифицировать их (то есть у него нет возможности вмешаться в процесс передачи). На втором этапе, первый абонент на основе имеющегося у него и полученного по сети вычисляет значение , а второй абонент на основе имеющегося у него и полученного по сети вычисляет значение . Как нетрудно видеть, у обоих абонентов получилось одно и то же число: . Его они и могут использовать в качестве секретного ключа, поскольку здесь злоумышленник встретится с практически неразрешимой (за разумное время) проблемой вычисления по перехваченным и , если числа выбраны достаточно большими.

Алгоритм Диффи — Хеллмана, где K — итоговый общий секретный ключ

При работе алгоритма, каждая сторона:

1. генерирует случайное натуральное число aзакрытый ключ

2. совместно с удалённой стороной устанавливает открытые параметры p и g (обычно значения p и g генерируются на одной стороне и передаются другой), где

p является случайным простым числом

g является первообразным корнем по модулю p

3. вычисляет открытый ключ A, используя преобразование над закрытым ключом

A = ga mod p

4. обменивается открытыми ключами с удалённой стороной

5. вычисляет общий секретный ключ K, используя открытый ключ удаленной стороны B и свой закрытый ключ a

K = Ba mod p

К получается равным с обеих сторон, потому что:

Ba mod p = (gb mod p)a mod p = gab mod p = (ga mod p)b mod p = Ab mod p

В практических реализациях, для a и b используются числа порядка 10100 и p порядка 10300. Число g не обязано быть большим и обычно имеет значение в пределах первого десятка.

[править]Пример

Ева - криптоаналитик. Она читает пересылку Боба и Алисы, но не изменяет содержимого их сообщений.

§ s = секретный ключ. s = 2

§ g = открытое простое число. g = 5

§ p = открытое простое число. p = 23

§ a = секретный ключ Алисы. a = 6

§ A = открытый ключ Алисы. A = ga mod p = 8

§ b = секретный ключ Боба. b = 15

§ B = открытый ключ Боба. B = gb mod p = 19

Алиса
знает не знает
p = 23 b =?
g = 5  
a = 6  
A = 56 mod 23 = 8  
B = 5b mod 23 = 19  
s = 196 mod 23 = 2  
s = 8b mod 23 = 2  
s = 196 mod 23 = 8b mod 23  
s = 2  

 

Боб
знает не знает
p = 23 a =?
g = 5  
b = 15  
B = 515 mod 23 = 19  
A = 5a mod 23 = 8  
s = 815 mod 23 = 2  
s = 19a mod 23 = 2  
s = 815 mod 23 = 19a mod 23  
s = 2  

 

Ева
знает не знает
p = 23 a =?
g = 5 b =?
  s =?
A = 5a mod 23 = 8  
B = 5b mod 23 = 19  
s = 19a mod 23  
s = 8b mod 23  
s = 19a mod 23 = 8b mod 23  

 

[править]Шифрование с открытым ключом

Данный алгоритм может также использоваться в качестве алгоритма шифрования с открытым ключом. В этом случае общая схема остаётся аналогичной приведённой выше, но с небольшими отличиями. Алиса не передаёт значения p, g и A Бобу напрямую, а публикует их заранее в качестве своего открытого ключа. Боб выполняет свою часть вычислений, после чего шифрует сообщение симметричным алгоритмом, используя K в качестве ключа, и передаёт шифротекст Алисе вместе со значением B. Однако такой подход не получил распространения, в этой области доминирует алгоритм RSA.

 




Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 504; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.021 сек.