Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Модификационная изменчивость. Норма реакции




Мутационная изменчивость. Классификация мутаций по уровню поражения наследственного материала. Мутации в половых и соматических клетках (генные, геномные, хромосомные перестройки). Факторы мутагенеза.

Транскрипция состоит из подготовительного и трех основных этапов. Подготовительный этап. На этом этапе происходит образование аминоацил-тРНК — присоединение аминокислоты к соответствующей тРНК. Эти реакции протекают в цитоплазме и осуществляются ферментами ами-ноацил-тРНК-синтетазами. Именно эти ферменты контролируют соответствие аминокислоты типу тРНК (ее антикодону).

1. Инициация. Происходит образование цельной ри-босомы, присоединение мРНК и установление первой аминокислоты. Напомним, что каждая рибосома состоит из двух субъединиц — малой и большой. В нерабочем состоянии они обычно не связаны друг с другом (говорят, что рибосома диссоциирована). В процессе же трансляции рибосомы находятся в “собранном” состоянии. В цельной рибосоме выделяют участок присоединения тРНК, “нагруженной” аминокислотой (то есть аминоацил-тРНК) — акцепторный (А-сайт) и участок удержания тРНК с растущей полипептидной цепью — пеп-тидильный (Р-сайт) (в молекулярной биологии выражение “участок цепи” часто заменяют термином “сайт”). Непосредственной связи между мРНК и растущей белковой цепью нет — она осуществляется через тРНК. Во время инициации (при участии трех вспомогательных белковых факторов) происходит связывание мРНК с малой субъединицей рибосомы, затем к первому кодону своим антикодоном присоединяется “груженая” (несущая аминокислоту) тРНК, а после этого к образовавшемуся комплексу присоединяется большая субъединица рибосомы. Интересно, что первой аминокислотой всех белков у эукариотических организмов всегда является метионин, а у прокариот — формил-метионин.

2. Элонгация. Ко второму кодону (в А-сайт рибосомы) присоединяется еще одна аминоацил-тРНК. Между карбоксильной группой (-СООН) первой аминокислоты и аминогруппой (-NH,) второй образуется пеп-тидная связь. После этого первая аминокислота отсоединяется от своей тРНК и “повисает” на соединенной с ней аминокислоте второй тРНК. Пустая первая тРНК освобождается из комплекса с рибосо-мой, и Р-сайт становится незанятым. Рибосома “делает шаг” вдоль мРНК. При этом тРНК с аминокислотами перемещается из А-сайта в Р-сайт. “Шаг” рибосомы всегда строго определен и равен трем нук-леотидам (кодону). Движение рибосомы вдоль мРНК называется транслокацией. Как репликация и транскрипция, транслокация всегда осуществляется в 5' — 3' направлении мРНК.

3. Терминация. Синтез полипептидной цепи идет до тех пор, пока рибосома не достигнет одного из трех стоп-кодонов. В этот момент белковая цепь отделяется, а рибосома диссоциирует на субъединицы. Практически все белки по окончании своего синтеза подвергаются созреванию или процессингу — реакциям посттрансляционных модификаций. После этого они (в основном по “трубопроводу” эндоплазматической сети) транспортируются к месту своего назначения.

73. Наследственность и изменчивость — фундаментальные свойства живого. Общее представление о генетическом материале и его свойствах: хранение, изменение, передача, реализация генетической информации. Характеристика диплоидного и гаплоидного кариотипа.

Жизнь как особое явление характеризуется продолжительностью существования во времени (на Земле она возникла более 3,5 млрд. лет назад), что обеспечивается преемственностью поколений живых систем. Происходит смена поколений клеток в организме, смена поколений организмов в популяциях, смена видов в системе биоценоза, смена биоценозов, образующих биосферу. В основе непрерывного существования жизни во времени лежит способность живых систем к самовоспроизведению. Сохранение жизни в меняющихся условиях оказывается возможным благодаря эволюции живых форм, в процессе которой у них появляются изменения, обеспечивающие приспособление к новой среде обитания. Непрерывность существования и историческое развитие живой природы обусловлены двумя фундаментальными свойствами жизни: наследственностью и изменчивостью.

Это изменения ДНК клетки (изменение строения и количества хромосом). Возникают под действием ультрафиолета, радиации (рентгеновских лучей) и т.п. Передаются по наследству, служат материалом для естественного отбора (мутационный процесс – одна из движущих сил эволюции).

Мутации: классификация: общие сведения

В классификации, основанной на размерах сегментов генома, подвергающихся преобразованиям, мутации разделяют на геномные, хромосомные и генные.

При геномных мутациях у организма-мутанта происходит внезапное изменение числа хромосом, кратное целому геному. Если через 2n обозначить число хромосом в исходном диплоидном геноме, то в результате геномной мутации, называемой полиплоидизацией, происходит образование полиплоидных организмов, геном которых представлен 4n, 6n и т.д. хромосомами. Различают аллополиплоидию, в результате которой происходит объединение при гибридизации целых неродственных геномов, и аутополиплоидию, для которой характерно адекватное увеличение числа хромосом собственного генома, кратное 2n.

При хромосомных мутациях происходят как изменение числа отдельных хромосом в геноме (анеуплоидия), так и крупные перестройки структуры отдельных хромосом. Последние получили название хромосомных аберраций. В этом случае наблюдаются потеря (делеции) или удвоение части (дупликации) генетического материала одной или нескольких хромосом, изменение ориентации сегментов хромосом в отдельных хромосомах (инверсии), а также перенос части генетического материала с одной хромосомы на другую (транслокации) (крайний случай - объединение целых хромосом).

Генные мутации встречаются наиболее часто. В результате генных мутаций происходят замены, делеции и вставки одного или нескольких нуклеотидов, транслокации, дупликации и инверсии различных частей гена. Если под действием мутации изменяется один нуклеотид, говорят о точковых мутациях. Точковые мутации с заменой оснований разделяют на два класса: транзиции (замена пурина на пурин или пиримидина на пиримидин) и трансверсии (замена пурина на пиримидин или наоборот). Из-за вырожденности генетического кода могут быть три генетических последствия точковых мутаций: сохранение смысла кодона (синонимическая замена нуклеотида), изменение смысла кодона, приводящее к замене аминокислоты в соответствующем месте полипептидной цепи (миссенс-мутация) или образование бессмысленного кодона с преждевременной терминацией (нонсенс-мутация). В генетическом коде имеются три бессмысленных кодона: амбер - UAG, охр - UAA и опал - UGA. В соответствии с этим получают название и мутации, приводящие к образованию бессмысленных триплетов (например амбер-мутация).

По влиянию на экспрессию генов мутации разделяют на две категории: мутации типа замен пар оснований и типа сдвига рамки считывания (frameshift). Последние представляют собой делеции или вставки нуклеотидов, число которых не кратно трем, что связано с триплетностью генетического кода.

- Мутации — внезапные скачкообразные изменения наследственных факторов.

- Представляют собой стойкие изменения наследственного материала.

- Качественные изменения не образуют непрерывного ряда вокруг средней величины

- Представляют собой ненаправленные изменения генотипа — они могут быть полезными (очень редко), вредными (большинство мутаций) и безразличными для данных условий существования организма.

-Могут повторяться.

Возникающие мутации могут передаваться по наследству в ряду поколений.

Типы мутаций:

- по изменению генотипа:

а) генные,

б) хромосомные,

в) геномные

- по изменению фенотипа:

а) морфологические,

б) биохимические,

в) физиологические,

г) летальные и т.д.

- по отношению к генеративному пути:

а) соматические,

б) генеративные.

- по поведению мутации в гетерозиготе:

а) доминантные,

б) рецессивные.

- по локализации в клетке:

а) ядерные,

б) цитоплазматические.

- по причинам возникновения:

а) спонтанные,

б) индуцированные.

Соматические мутации — мутации в соматических клетках, передающиеся только потомкам этих клеток, т.е. не выходят за пределы данного организма. Например, могут стать причиной появления злокачественных новообразований (в основе лежит повреждение ДНК).

Мутации в половых клетках — повреждения генома, имеющиеся у одного или обоих родителей, передающиеся через сперматозоид и/или яйцеклетку потомству. Примеры таких наследуемых эндокринных нарушений — ВГН и псевдовагинальная мошоночно-промежностная гипоспадия. Это два наиболее часто встречающихся аутосомно-рецессивных заболевания, поражающих половую сферу.

 

В настоящее время различают три группы мутагенных факторов: физические, химические и биологические.

Физическими мутагенами называются физические воздействия на живые организмы, которые оказывают либо прямое влияние на ДНК, либо опосредованное влияние через системы репликации, репарации, рекомбинации.

К ним относятся все виды ионизирующих излучений (гамма- и рентгеновские лучи, протоны, нейтроны и другие), ультрафиолетовое излучение, высокие и низкие температуры. Источники излучения – солнечный свет, ртутные лампы, рентгеновское излучение, радиоактивные элементы.

Химические мутагены – химические вещества, способные вызывать мутации.

К химическим мутагенам относятся многие алкилирующие соединения, аналоги азотистых оснований нуклеиновых кислот, производные акридина, некоторые биополимеры (чужеродные ДНК или РНК), алкалоиды и многие другие.

Также среди химических мутагенов выделяют супермутагены, увеличивающие частоту возникновения мутаций в 5-50 раз по сравнению с природной. Супермутагенами являются: диметилсульфат, иприт, этиленимин, уретан и др.

К биологическим факторам мутагенеза относят старение, иммунные, нейроэндокринные конфликты в организме, а также последствия воздействия на организм факторов инфекционной природы. При этом виде мутагенеза возникновение изменений происходит опосредованно.

Модификационная (фенотипическая) изменчивость — изменения в организме, связанные с изменением фенотипа вследствие влияния окружающей среды и носящие, в большинстве случаев, адаптивный характер. Генотип при этом не изменяется. В целом современное понятие «адаптивные модификации» соответствует понятию «определенной изменчивости», которое ввел в науку Чарльз Дарвин.

Норма реакции модификационной изменчивости

У модификационной изменчивости есть довольно жесткие границы, или пределы проявления признака, обусловленные генотипическим свойством особи. Пределы модификационной изменчивости признака называют его нормой реак­ции. Норма реакции характеризует способность организмов данного ви­да реагировать (в пределах генотипа) на меняющиеся условия и особым об­разом проявляться в тех или иных конкретных условиях. Одни призна­ки (например, яйценоскость, молоч- 1 ность, жиронакопляемость, масса и рост организмов), т.е. признаки коли­чественного характера, обладают очень широкой нормой реакции, другие (окраска шерсти, семян, форма листьев, размер и форма яиц), т.е. качествен­ные, признаки — очень узкой. Пределы нормы реакции определены генотипом.




Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 1212; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.023 сек.