КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Модификационная изменчивость. Норма реакции
Мутационная изменчивость. Классификация мутаций по уровню поражения наследственного материала. Мутации в половых и соматических клетках (генные, геномные, хромосомные перестройки). Факторы мутагенеза. Транскрипция состоит из подготовительного и трех основных этапов. Подготовительный этап. На этом этапе происходит образование аминоацил-тРНК — присоединение аминокислоты к соответствующей тРНК. Эти реакции протекают в цитоплазме и осуществляются ферментами ами-ноацил-тРНК-синтетазами. Именно эти ферменты контролируют соответствие аминокислоты типу тРНК (ее антикодону). 1. Инициация. Происходит образование цельной ри-босомы, присоединение мРНК и установление первой аминокислоты. Напомним, что каждая рибосома состоит из двух субъединиц — малой и большой. В нерабочем состоянии они обычно не связаны друг с другом (говорят, что рибосома диссоциирована). В процессе же трансляции рибосомы находятся в “собранном” состоянии. В цельной рибосоме выделяют участок присоединения тРНК, “нагруженной” аминокислотой (то есть аминоацил-тРНК) — акцепторный (А-сайт) и участок удержания тРНК с растущей полипептидной цепью — пеп-тидильный (Р-сайт) (в молекулярной биологии выражение “участок цепи” часто заменяют термином “сайт”). Непосредственной связи между мРНК и растущей белковой цепью нет — она осуществляется через тРНК. Во время инициации (при участии трех вспомогательных белковых факторов) происходит связывание мРНК с малой субъединицей рибосомы, затем к первому кодону своим антикодоном присоединяется “груженая” (несущая аминокислоту) тРНК, а после этого к образовавшемуся комплексу присоединяется большая субъединица рибосомы. Интересно, что первой аминокислотой всех белков у эукариотических организмов всегда является метионин, а у прокариот — формил-метионин. 2. Элонгация. Ко второму кодону (в А-сайт рибосомы) присоединяется еще одна аминоацил-тРНК. Между карбоксильной группой (-СООН) первой аминокислоты и аминогруппой (-NH,) второй образуется пеп-тидная связь. После этого первая аминокислота отсоединяется от своей тРНК и “повисает” на соединенной с ней аминокислоте второй тРНК. Пустая первая тРНК освобождается из комплекса с рибосо-мой, и Р-сайт становится незанятым. Рибосома “делает шаг” вдоль мРНК. При этом тРНК с аминокислотами перемещается из А-сайта в Р-сайт. “Шаг” рибосомы всегда строго определен и равен трем нук-леотидам (кодону). Движение рибосомы вдоль мРНК называется транслокацией. Как репликация и транскрипция, транслокация всегда осуществляется в 5' — 3' направлении мРНК. 3. Терминация. Синтез полипептидной цепи идет до тех пор, пока рибосома не достигнет одного из трех стоп-кодонов. В этот момент белковая цепь отделяется, а рибосома диссоциирует на субъединицы. Практически все белки по окончании своего синтеза подвергаются созреванию или процессингу — реакциям посттрансляционных модификаций. После этого они (в основном по “трубопроводу” эндоплазматической сети) транспортируются к месту своего назначения. 73. Наследственность и изменчивость — фундаментальные свойства живого. Общее представление о генетическом материале и его свойствах: хранение, изменение, передача, реализация генетической информации. Характеристика диплоидного и гаплоидного кариотипа. Жизнь как особое явление характеризуется продолжительностью существования во времени (на Земле она возникла более 3,5 млрд. лет назад), что обеспечивается преемственностью поколений живых систем. Происходит смена поколений клеток в организме, смена поколений организмов в популяциях, смена видов в системе биоценоза, смена биоценозов, образующих биосферу. В основе непрерывного существования жизни во времени лежит способность живых систем к самовоспроизведению. Сохранение жизни в меняющихся условиях оказывается возможным благодаря эволюции живых форм, в процессе которой у них появляются изменения, обеспечивающие приспособление к новой среде обитания. Непрерывность существования и историческое развитие живой природы обусловлены двумя фундаментальными свойствами жизни: наследственностью и изменчивостью. Это изменения ДНК клетки (изменение строения и количества хромосом). Возникают под действием ультрафиолета, радиации (рентгеновских лучей) и т.п. Передаются по наследству, служат материалом для естественного отбора (мутационный процесс – одна из движущих сил эволюции). Мутации: классификация: общие сведения При геномных мутациях у организма-мутанта происходит внезапное изменение числа хромосом, кратное целому геному. Если через 2n обозначить число хромосом в исходном диплоидном геноме, то в результате геномной мутации, называемой полиплоидизацией, происходит образование полиплоидных организмов, геном которых представлен 4n, 6n и т.д. хромосомами. Различают аллополиплоидию, в результате которой происходит объединение при гибридизации целых неродственных геномов, и аутополиплоидию, для которой характерно адекватное увеличение числа хромосом собственного генома, кратное 2n. При хромосомных мутациях происходят как изменение числа отдельных хромосом в геноме (анеуплоидия), так и крупные перестройки структуры отдельных хромосом. Последние получили название хромосомных аберраций. В этом случае наблюдаются потеря (делеции) или удвоение части (дупликации) генетического материала одной или нескольких хромосом, изменение ориентации сегментов хромосом в отдельных хромосомах (инверсии), а также перенос части генетического материала с одной хромосомы на другую (транслокации) (крайний случай - объединение целых хромосом). Генные мутации встречаются наиболее часто. В результате генных мутаций происходят замены, делеции и вставки одного или нескольких нуклеотидов, транслокации, дупликации и инверсии различных частей гена. Если под действием мутации изменяется один нуклеотид, говорят о точковых мутациях. Точковые мутации с заменой оснований разделяют на два класса: транзиции (замена пурина на пурин или пиримидина на пиримидин) и трансверсии (замена пурина на пиримидин или наоборот). Из-за вырожденности генетического кода могут быть три генетических последствия точковых мутаций: сохранение смысла кодона (синонимическая замена нуклеотида), изменение смысла кодона, приводящее к замене аминокислоты в соответствующем месте полипептидной цепи (миссенс-мутация) или образование бессмысленного кодона с преждевременной терминацией (нонсенс-мутация). В генетическом коде имеются три бессмысленных кодона: амбер - UAG, охр - UAA и опал - UGA. В соответствии с этим получают название и мутации, приводящие к образованию бессмысленных триплетов (например амбер-мутация). По влиянию на экспрессию генов мутации разделяют на две категории: мутации типа замен пар оснований и типа сдвига рамки считывания (frameshift). Последние представляют собой делеции или вставки нуклеотидов, число которых не кратно трем, что связано с триплетностью генетического кода. - Мутации — внезапные скачкообразные изменения наследственных факторов. - Представляют собой стойкие изменения наследственного материала. - Качественные изменения не образуют непрерывного ряда вокруг средней величины - Представляют собой ненаправленные изменения генотипа — они могут быть полезными (очень редко), вредными (большинство мутаций) и безразличными для данных условий существования организма. -Могут повторяться. Возникающие мутации могут передаваться по наследству в ряду поколений. Типы мутаций: - по изменению генотипа: а) генные, б) хромосомные, в) геномные - по изменению фенотипа: а) морфологические, б) биохимические, в) физиологические, г) летальные и т.д. - по отношению к генеративному пути: а) соматические, б) генеративные. - по поведению мутации в гетерозиготе: а) доминантные, б) рецессивные. - по локализации в клетке: а) ядерные, б) цитоплазматические. - по причинам возникновения: а) спонтанные, б) индуцированные. Соматические мутации — мутации в соматических клетках, передающиеся только потомкам этих клеток, т.е. не выходят за пределы данного организма. Например, могут стать причиной появления злокачественных новообразований (в основе лежит повреждение ДНК). Мутации в половых клетках — повреждения генома, имеющиеся у одного или обоих родителей, передающиеся через сперматозоид и/или яйцеклетку потомству. Примеры таких наследуемых эндокринных нарушений — ВГН и псевдовагинальная мошоночно-промежностная гипоспадия. Это два наиболее часто встречающихся аутосомно-рецессивных заболевания, поражающих половую сферу.
В настоящее время различают три группы мутагенных факторов: физические, химические и биологические. Физическими мутагенами называются физические воздействия на живые организмы, которые оказывают либо прямое влияние на ДНК, либо опосредованное влияние через системы репликации, репарации, рекомбинации. К ним относятся все виды ионизирующих излучений (гамма- и рентгеновские лучи, протоны, нейтроны и другие), ультрафиолетовое излучение, высокие и низкие температуры. Источники излучения – солнечный свет, ртутные лампы, рентгеновское излучение, радиоактивные элементы. Химические мутагены – химические вещества, способные вызывать мутации. К химическим мутагенам относятся многие алкилирующие соединения, аналоги азотистых оснований нуклеиновых кислот, производные акридина, некоторые биополимеры (чужеродные ДНК или РНК), алкалоиды и многие другие. Также среди химических мутагенов выделяют супермутагены, увеличивающие частоту возникновения мутаций в 5-50 раз по сравнению с природной. Супермутагенами являются: диметилсульфат, иприт, этиленимин, уретан и др. К биологическим факторам мутагенеза относят старение, иммунные, нейроэндокринные конфликты в организме, а также последствия воздействия на организм факторов инфекционной природы. При этом виде мутагенеза возникновение изменений происходит опосредованно. Модификационная (фенотипическая) изменчивость — изменения в организме, связанные с изменением фенотипа вследствие влияния окружающей среды и носящие, в большинстве случаев, адаптивный характер. Генотип при этом не изменяется. В целом современное понятие «адаптивные модификации» соответствует понятию «определенной изменчивости», которое ввел в науку Чарльз Дарвин. Норма реакции модификационной изменчивости У модификационной изменчивости есть довольно жесткие границы, или пределы проявления признака, обусловленные генотипическим свойством особи. Пределы модификационной изменчивости признака называют его нормой реакции. Норма реакции характеризует способность организмов данного вида реагировать (в пределах генотипа) на меняющиеся условия и особым образом проявляться в тех или иных конкретных условиях. Одни признаки (например, яйценоскость, молоч- 1 ность, жиронакопляемость, масса и рост организмов), т.е. признаки количественного характера, обладают очень широкой нормой реакции, другие (окраска шерсти, семян, форма листьев, размер и форма яиц), т.е. качественные, признаки — очень узкой. Пределы нормы реакции определены генотипом.
Дата добавления: 2015-04-24; Просмотров: 1257; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |