КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Методы определения упругих свойств
1) Для динамического определения модулем разработано несколько способов. Например, модуль сдвига В этой установке образец закрепляют G =128рLIf2, L - длина образца; d - диаметр образца; I - момент инерции скручивающей системы; f - частота колебаний. Момент инерции может быть определен, если известны массы перемещающихся грузов и периоды колебаний системы, соответствующие двум различным расстояниям от грузов до центра образца. При таком способе измерения размеры образца и параметры скручивающей системы подбирают обычно таким образом, чтобы измеряемая частота -колебаний составляла около 1Гц. 2)Метод внутреннего трения. Изменение напряжения (пунктир) и деформации во времени при релаксации деформации. Этот метод, основанный на способности металлов необратимо рассеивать энергию упругой деформации, широко распространен в металловедении и физике металлов. В соответствии с законом Гука деформация точно следует за приложенным напряжением. В этом законе отсутствует фактор времени. В действительности стабильная деформация в соответствии с законом Гука получается только при очень медленном нагружении образца. Если очень быстро приложить напряжение у (или ф), то образец деформируется на величину е' и модуль нормальной упругости, например Е, будет равен E=у/ е'. Если затем выдерживать под напряжением о образец до момента установления равновесия, то получится дополнительная деформация образца е" и Ер приобретает значение Еp=у/( е'- е") 3) Наиболее распространенным является метод крутильного маятника. первоначальную амплитуду А{) и измеряют амплитуду Ап через п колебаний. Относительные потери (рассеяние упругой энергии Uпревращение ее в теплоту) при малом угле цобозначают Q-1. При этом внутреннее трение равно: Q-1 = lnK/πn где К=А0/Аn Зависимость внутреннего трения (1) и динамического модуля упругости (2) от произведения ωτ, τ -время, ω-угловая скорость.
2. Методы определения термического расширения, дилатометрические исследования. Знание абсолютных значений коэффициента линейного расширения сплавов часто необходимо для изготовления деталей машин и приборов высокой точности, и также деталей, работающих при нагреве. Дилатометрический анализ заключается в определении изменений длины образцов при нагреве и охлаждении или при изотермической выдержке. Важным преимуществом дилатометрического анализа является независимость объемного эффекта, а следовательно, и точности анализа от скорости охлаждения. Дилатометрический анализ применяют для определения коэффициента теплового расширения и изучения фазовых превращений в сплавах. Например, дилатометрическим анализом изучают процессы закалки и отпуска стали, графитизацию чугуна и процессы старения некоторых сплавов. Измерение длины (или объема) во времени в изотермических условиях позволяет определить кинетику превращений, поскольку степень этих превращений во времени пропорциональна изменениям длины. Если в металлах или сплавах при изменении температуры не происходит фазовых превращений, то их длина (объем) изменяется плавно. Однако, если происходит фазовое превращение, то длина (или объем) растет (или убывает) скачкообразно. Критические точки и области превращений определяют по кривым, показывающим изменения длины изучаемого образца при нагреве или при охлаждении. Резкие перегибы на кривых свидетельствуют о внутренних изменениях, происшедших в сплаве. В точке АС1 перлит превращается в Критические точки могут быть определены непосредственно по дилатометрической кривой, без дополнительных построений. Сравнение критических точек при нагреве и охлаждении показывает их заметное различие, т. е. температурный гистерезис.. Перегибы на кривой объясняются фазовыми превращениями идущими при отжиге закаленной приборы - дилатометры - механические, оптические и электрические. Одна из конструкций электрического дилатометра. Прибор для дилатометрического анализа состоит из головки (собственно дилатометра) и регистрирующего аппарата. В головке имеется запаянная с одного конца кварцевая трубка 1, прочно закрепленная в металлической втулке 2. В трубке помещается образец 3, имеющий форму цилиндрического стержня диаметром 4 мм и длиной 30 мм. Образец упирается в запаянный конец кварцевой трубки и кварцевый стержень 4, перемещение которого передается на индикатор часового типа 5 и эластичную пластину 6, с наклеенными на неё тензодатчиками 7. Перемещение образца вызывает изменение электрического сигнала снимаемого с тензодатчиков. Температура образца изменяется при помощи нагревательной печи 8 и регистрируется термопарой 9. находящейся в непосредственной близости к образцу. 18. Методы определения термического расширения, дилатометрические исследования. Знание абсолютных значений коэффициента линейного расширения сплавов часто необходимо для изготовления деталей машин и приборов высокой точности, и также деталей, работающих при нагреве. Дилатометрический анализ заключается в определении изменений длины образцов при нагреве и охлаждении или при изотермической выдержке. Важным преимуществом дилатометрического анализа является независимость объемного эффекта, а следовательно, и точности анализа от скорости охлаждения. Дилатометрический анализ применяют для определения коэффициента теплового расширения и изучения фазовых превращений в сплавах. Например, дилатометрическим анализом изучают процессы закалки и отпуска стали, графитизацию чугуна и процессы старения некоторых сплавов. Измерение длины (или объема) во времени в изотермических условиях позволяет определить кинетику превращений, поскольку степень этих превращений во времени пропорциональна изменениям длины. Если в металлах или сплавах при изменении температуры не происходит фазовых превращений, то их длина (объем) изменяется плавно. Однако, если происходит фазовое превращение, то длина (или объем) растет (или убывает) скачкообразно. Критические точки и области превращений определяют по кривым, показывающим изменения длины изучаемого образца при нагреве или при охлаждении. Резкие перегибы на кривых свидетельствуют о внутренних изменениях, происшедших в сплаве. В точке АС1 перлит превращается в доэвтектоидной стали) феррит превращается в аустенит, обладающий меньшим удельным объемом; количество аустенита возрастает в ходе этого превращения до 100%. Критические точки могут быть определены непосредственно по дилатометрической кривой, без дополнительных построений. Сравнение критических точек при нагреве и охлаждении показывает их заметное различие, т. е. температурный гистерезис.. Перегибы на кривой объясняются фазовыми превращениями идущими при отжиге закаленной приборы - дилатометры - механические, оптические и электрические. Одна из конструкций электрического дилатометра. Прибор для дилатометрического анализа состоит из головки (собственно дилатометра) и регистрирующего аппарата. В головке имеется запаянная с одного конца кварцевая трубка 1, прочно закрепленная в металлической втулке 2. В трубке помещается образец 3, имеющий форму цилиндрического стержня диаметром 4 мм и длиной 30 мм. Образец упирается в запаянный конец кварцевой трубки и кварцевый стержень 4, перемещение которого передается на индикатор часового типа 5 и эластичную пластину 6, с наклеенными на неё тензодатчиками 7. Перемещение образца вызывает изменение электрического сигнала снимаемого с тензодатчиков. Температура образца изменяется при помощи нагревательной печи 8 и регистрируется термопарой 9. находящейся в непосредственной близости к образцу.
Дата добавления: 2015-04-24; Просмотров: 2236; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |