![]() КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Теорема Остроградского Гаусса и ее применение для вычисления напряженности простейших полей
Распределение зарядов в пространстве (плотность зарядов). Плотность заряда — это количество заряда, приходящееся на единицу длины, площади или объёма, таким образом определяются линейная, поверхностная и объемная плотности заряда, которые измеряются в системе СИ: в Кулонах на метр [Кл/м], в Кулонах на квадратный метр [Кл/м²] и в Кулонах на кубический метр [Кл/м³], соответственно. В отличие от плотности вещества, плотность заряда может иметь как положительные, так и отрицательные значения, это связано с тем, что существуют положительные и отрицательные заряды. На практике часто встречаются случаи, когда заряженное тело настолько велико, что использование модели точечного заряда не представляется возможным, в этом случае для определения параметров поля необходимо знать распределение зарядов внутри тела, т.е. по его объёму. В этом случае поступают по аналогии с определением плотности тела, весь объём тела V разбивается на большое количество элементарных объёмов ΔV, заряд которых будет Δq. В этом случае заряженность тела можно охарактеризовать объёмной плотностью заряда Для целого класса веществ, например, для проводников, характерно присутствие электрических зарядов только в достаточно тонком поверхностном слое. В этом случае характерной величиной при анализе полей будет поверхностная плотность зарядов, которая по аналогии с уравнением определится как Проводники, длина которых существенно больше их прочих размеров удобно характеризовать линейной плотностью заряда
Теорема Остроградского Гаусса: Поток вектора напряжённости электрического поля через любую произвольно выбранную замкнутую поверхность пропорционален заключённому внутри этой поверхности электрическому заряду. Плотность заряда — это количество заряда, приходящееся на единицу длины, площади или объёма, таким образом определяются линейная, поверхностная и объемная плотности заряда, которые измеряются в системе СИ: в Кулонах на метр [Кл/м], в Кулонах на квадратный метр [Кл/м²] и в Кулонах на кубический метр [Кл/м³], соответственно. В отличие от плотности вещества, плотность заряда может иметь как положительные, так и отрицательные значения, это связано с тем, что существуют положительные и отрицательные заряды. ¾ Строим гауссову поверхность ¾ Строим фигуру проходящую через поверхность ¾ Определяем напряженность (Е) или индукцию(D) Гаусcова поверхность должна удовлетворять следующим критериям: ¾ Должная являться абстракцией ¾ Обязательно должна быть замкнута ¾ По возможности должна быть правильной геометрической формы ¾ Должна обязательно включать в себя заданные заряды.
Линии напряженности перпендикулярны рассматриваемой плоскости и направлены от нее в обе стороны. В качестве замкнутой поверхности мысленно построим цилиндр, основания которого параллельны заряженной плоскости, а ось перпендикулярна ей. Так как образующие цилиндра параллельны линиям напряженности (cosα = 0),то поток вектора напряженности сквозь боковую поверхность цилиндра равен нулю, а полный поток сквозь цилиндр равен сумме потоков сквозь его основания (площади оснований равны и для основания En совпадает с E), т.е. равен 2ES. Заряд, заключенный внутри построенной цилиндрической поверхности, равен σS. Согласно теореме Гаусса Из формулы вытекает, что Е не зависит от длины цилиндра, т. е. напряженность поля на любых расстояниях одинакова по модулю, иными словами, поле равномерно заряженной плоскости однородно.
Рассмотрим поле, создаваемое бесконечной прямолинейной нитью с линейной плотностью заряда, равной В силу симметрии: 1. вектор напряженности поля направлен перпендикулярно нити, прямо от нее (или прямо к ней). 2. модуль этого вектора в любой точке поверхности цилиндра одинаков. Тогда поток напряжённости через эту поверхность можно рассчитать следующим образом: Учитывается только площадь боковой поверхности цилиндра, так как поток через основания цилиндра равен нулю (вследствие направления E по касательной к ним). Приравнивая два полученных выражения для
Поле заряженной сферы:
Поэтому линии напряженности направлены радиально. Построим мысленно сферу радиуса r, имеющую общий центр с заряженной сферой. Если r > R, то внутрь поверхности попадает весь заряд Q, создающий рассматриваемое поле, и, по теореме Гаусса, При r > R поле убывает с расстоянием по такому же закону, как у точечного заряда. Если r' < R, то замкнутая поверхность не содержит внутри зарядов, поэтому внутри равномерно заряженной сферической поверхности электростатическое поле отсутствует (E=0).
Дата добавления: 2015-04-24; Просмотров: 1724; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |