Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Сила Лоренца. Работа по перемещению проводника с током в магнитном поле, так как на проводник с током в магнитном поле действуют силы




Работа по перемещению проводника с током в магнитном поле, так как на проводник с током в магнитном поле действуют силы, то, очевидно, при перемещении этого проводника будет совершаться работа. Работа при перемещение проводника с током в магнитном поле выражается формулой

Плазма

Самостоятельный газовый разряд

Несамостоятельный газовый разряд

- если действие ионизатора прекратить, то прекратится и разряд.

Когда разряд достигает насыщения - график становится горизонтальным. Здесь электропроводность газа вызвана лишь действием ионизатора.

 

- в этом случае газовый разряд продолжается и после прекращения действия внешнего ионизатора за счет ионов и электронов, возникших в результате ударной ионизации (= ионизации эл. удара); возникает при увеличении разности потенциалов между электродами (возникает электронная лавина).

 

 

- это четвертое агрегатное состояние вещества с высокой степенью ионизации за счет столкновения молекул на большой скорости при высокой температуре; встречается в природе: ионосфера - слабо ионизированная плазма, Солнце - полностью ионизированная плазма; искусственная плазма - в газоразрядных лампах.

Плазма бывает:

Низкотемпературная - при температурах меньше 100 000К;
высокотемпературная - при температурах больше 100 000К.

Основные свойства плазмы:

- высокая электропроводность
- сильное взаимодействие с внешними электрическими и магнитными полями.

При температуре

любое вещество находится в состоянии плазмы.

 

№10. ЭЛЕКТРИЧЕСКИЙ ТОК В ВАКУУМЕ.

- это такая степень разрежения газа, при которой соударений молекул практически нет;

- электрический ток невозможен, т.к. возможное количество ионизированных молекул не может обеспечить электропроводность;

- создать эл.ток в вакууме можно, если использовать источник заряженных частиц;

- действие источника заряженных частиц может быть основано на явлении термоэлектронной эмиссии.

Электронные пучки

- это поток быстро летящих электронов в электронных лампах и газоразрядных устройствах.

Свойства электронных пучков:

- отклоняются в электрических полях;

- отклоняются в магнитных полях под действием силы Лоренца;

- при торможении пучка, попадающего на вещество возникает рентгеновское излучение;

- вызывает свечение (люминисценцию) некоторых твердых и жидких тел (люминофоров);

- нагревают вещество, попадая на него.

Электронно-лучевая трубка (ЭЛТ), кинескоп — вакуумный прибор, преобразующий электрические сигналы в световые.

№11. Полупроводники.

Полупроводники́ — материалы, которые по своей удельной проводимости занимают промежуточное место между проводниками и диэлектриками и отличаются от проводников сильной зависимостью удельной проводимости от концентрации примесей, температуры и воздействия различных видов излучения.

Собственная проводимость

Полупроводники, в которых свободные электроны и «дырки» появляются в процессе ионизации атомов, из которых построен весь кристалл, называют полупроводниками с собственной проводимостью. В полупроводниках с собственной проводимостью концентрация свободных электронов равняется концентрации «дырок».

Проводимость связана с подвижностью частиц следующим соотношением:

Примесная проводимость

Для создания полупроводниковых приборов часто используют кристаллы с примесной проводимостью. Такие кристаллы изготавливаются с помощью внесения примесей с атомами трехвалентного или пятивалентного химического элемента.

№12.

электронно-дырочный переход — область пространства на стыке двух полупроводников p- и n-типа, в которой происходит переход от одного типа проводимости к другому. p-n-Переход является основой для полупроводниковых диодов, триодов и других электронных элементов с нелинейной вольт-амперной характеристикой.

Полупроводниковый диод — полупроводниковый прибор с одним электрическим переходом и двумя выводами (электродами). В отличие от других типов диодов, принцип действия полупроводникового диода основывается на явлении p-n-перехода.

№13.

Транзи́стор, полупроводниковый триод — радиоэлектронный компонент из полупроводникового материала, обычно с тремя выводами, позволяющий входным сигналам управлять током в электрической цепи. Обычно используется для усиления, генерирования и преобразования электрических сигналов.

Управление током в выходной цепи осуществляется за счёт изменения входного напряжения или тока. Небольшое изменение входных величин может приводить к существенно большему изменению выходного напряжения и тока. Это усилительное свойство транзисторов используется в аналоговой технике (аналоговые ТВ, радио, связь и т. п.).

Полупроводниковые приборы, ППП — широкий класс электронных приборов, изготавливаемых из полупроводников.

К полупроводниковым приборам относятся:

Интегральные схемы (микросхемы)

Полупроводниковые диоды (в том числе варикапы, стабилитроны, диоды Шоттки),

Тиристоры, фототиристоры,

Транзисторы,

Приборы с зарядовой связью,

Полупроводниковые СВЧ-приборы (диоды Ганна, лавинно-пролетные диоды),

Оптоэлектронные приборы (фоторезисторы, фотодиоды, солнечные элементы, детекторы ядерных излучений, светодиоды, полупроводниковые лазеры, электролюминесцентные излучатели),

Терморезисторы, датчики Холла.

№14.

Взаимодействие токов.

Токи одинакового направления притягиваются, а противоположного – отталкиваются.

Вокруг любого проводника с током имеется поле, отличное от электрического, поскольку оно не действует на неподвижные заряды.

Магнитное поле — силовое поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом, независимо от состояния их движения.

Для графического изображения магнитных полей используются линии магнитной индукции. Линия магнитной индукции – это линия, в каждой точке которой вектор магнитной индукции направлен по касательной к ней.

Магнитное поле прямолинейного проводника, витка, соленоида.

Правилом правого винта: если поступательное движение винта происходит по направлению тока в проводнике, то направление вращение головки винта показывает направление линий индукции магнитного поля.

Правило правого винта для кругового тока можно использовать и по-другому: если вращать головку винта по направлению тока в контуре, то поступательное движение винта укажет направление линий индукции внутри контура.

№15. Характеристики магнитного поля.

Величину В, являющуюся силовой характеристикой магнитного поля в данной точке, называют магнитной индукцией.

Напряжённость магни́тного по́ля — (стандартное обозначение Н) это векторная физическая величина, равная разности вектора магнитной индукции B и вектора намагниченности Магнитная проницаемость — физическая величина, характеризующая связь между магнитной индукцией и напряжённостью магнитного поля в веществе.

Магни́тный пото́к — поток как интеграл вектора магнитной индукции через конечную поверхность.

№16. Магнитное поле действует с некоторой силой на любой проводник с током,

находящийся в нем.

Если проводник, по которому протекает электрический ток подвесить в магнитном поле, например, между полюсами магнита, то магнитное поле будет действовать на проводник с некоторой силой и отклонять его.

Сила Ампера – это сила, с которой магнитное поле действует на помещенный в него проводник с током.

Сила Ампера выражается формулами:

FA=Bil sin a

FA макс=Bil

№17. На рамку с током I, помещенную во внешнее однородное магнитное поле с индукцией действует момент сил Момент сил выражается соотношением:

M = I S B sin α = pmB sin α,

где S – площадь рамки, α – угол между нормалью к плоскости рамки и

вектором Векторная величина где – единичный вектор нормали, называется магнитным моментом рамки. Направление вектора связано с направлением тока в рамке правилом правого винта.

Компьютерная модель демонстрирует возникновение момента сил, действующего на рамку с током в магнитном поле. Значение момента сил может быть определено при различных ориентациях рамки относительно магнитного поя. При выполнении компьютерных экспериментов можно изменять индукцию магнитного поля, площадь рамки (с помощью мыши) и ее ориентацию.

А=I ∆Ф

 

№18. ДЕЙСТВИЕ МАГНИТНОГО ПОЛЯ НА ДВИЖУЩИЙСЯ ЗАРЯД

- сила, действующая со стороны магнитного поля на движущуюся электрически заряженную частицу.

где q - заряд частицы;
V - скорость заряда;
B - индукции магнитного поля;
a - угол между вектором скорости заряда и вектором магнитной индукции.


 

Так как сила Лоренца всегда перпендикулярна скорости заряда, то она не совершает работы (т.е. не изменяет величину скорости заряда и его кинетическую энергию).

Если заряженная частица движется параллельно силовым линиям магнитного поля, то Fл = 0, и заряд в магнитном поле движется равномерно и прямолинейно.

Если заряженная частица движется перпендикулярно силовым линиям магнитного поля, то сила Лоренца является центростремительной
и создает центростремительное ускорение равное

 

В этом случае частица движется по окружности.


.

Согласно второму закону Ньютона: сила Лоренца равнв произведению массы частицы на центростремительное ускорение

тогда радиус окружности

а период обращения заряда в магнитном поле

Так как электрический ток представляет собой упорядоченное движение зарядов, то действие магнитного поля на проводник с током есть результат его действия на отдельные движущиеся заряды.

 

Направление силы Лоренца определяется по правилу левой руки:


Если поставить левую руку так, чтобы перпендикулярная скорости составляющая вектора индукции входила в ладонь, а четыре пальца были бы расположены по направлению скорости движения положительного заряда (или против направления скорости отрицательного заряда), то отогнутый большой палец укажет направление силы Лоренца.

 

№19.МАГНИТНЫЕ СВОЙСТВА ВЕЩЕСТВА

Магнитные свойства вещества объясняются согласно гипотезе Ампера циркулирующими внутри любого вещества замкнутыми токами:



внутри атомов, вследствие движения электронов по орбитам, существуют элементарные электрические токи, которые создают элементарные магнитные поля.
Поэтому:
1. если вещество не обладает магнитными свойствами - элементарные магнитные поля не сориентированы (из-за теплового движения);

2. если вещество обладает магнитными свойствами - элементарные магнитные поля одинаково направлены (сориентированы) и образуется собственное внутреннее магнитное поле вещества.

 




Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 955; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.05 сек.