КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Извлечение корня
Определение. Корнем n -ой степени из комплексного числа называется такое комплексное число, n -я степень которого равна подкоренному числу. Из этого определения следует, что из равенства следует равенство . Из равенства комплексных чисел следует , а аргументы отличаются на число, кратное ; . Отсюда , . Здесь есть арифметическое значение корня, а k – любое целое число. Таким образом, получается формула В этой формуле число k может принимать всевозможные целые значения, но различных значений корня будет только n и они соответствуют значениям k = 0, 1, 2, …, n - 1. Докажем этот факт. Действительно, правые части в этой формуле различны тогда, когда аргументы и отличаются на величину, не кратную , и будут одинаковыми, если указанные аргументы отличаются на величину, кратную . Поэтому разность не может быть кратна . Из этого результата и следует, что любым подряд взятым n целым числам k соответствуют n различных значений корня. Пусть теперь k 3– целое число, не входящее в эту последовательность подряд взятых значений k. Это число можно представить в виде k 3= gn + ki, где g – целое число, а ki – одно из чисел этого ряда, поэтому , то есть значению k 3соответствует то же значение корня, что и значению ki. Вывод: корень n -ой степени из комплексного числа имеет n различных значений. Исключением из этого правила является лишь частный случай, когда извлекается корень из нуля. В этом случае все значения корня равны нулю.
f = f (x) = a 0 + a 1 x
Дата добавления: 2015-04-24; Просмотров: 407; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |