КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Внутриклеточный поток веществ. Реакции дыхательного обмена не только поставляют энергию, но и снабжают клетку строительными блоками для синтеза разнообразных молекул
Реакции дыхательного обмена не только поставляют энергию, но и снабжают клетку строительными блоками для синтеза разнообразных молекул. Ими являются многие продукты расщепления пищевых веществ. Особая роль в этом принадлежит одному из этапов дыхательного обмена — циклу Кребса, осуществля-емому в митохондриях. Через этот цикл проходит путь углеродных атомов (углеродных скелетов) большинства соединений, служащих промежуточными продуктами синтеза химических компонентов клетки. В цикле Кребса происходит выбор пути превращения того или иного соединения, а также переключение обмена клетки с одного пути на другой, например с углеводного на жировой. Таким образом, дыхательный обмен одновременно составляет ведущее звено потока веществ, объединяющего метаболические пути расщепления и образования углеводов, белков, жиров, нуклеиновых кислот (рис. 2.9).
Рис. 2.9. Взаимосвязь внутриклеточного обмена белков, жиров и углеводов через цикл Кребса 13.Жизненный и митотический (пролиферативный) цикл клетки. Фазы митотического цикла, их характеристика и значение.
14.Наследственность и изменчивость – свойства, определяющие непрерывность существования и развития жизни. Уровни структурно-функциональной организации наследственного материала: генный, хромосомный и геномный.
30.Гаметогенез. Мейоз. Цитологическая и цитогенетическая характеристика. Особенности ово- и сперматогенеза у человека.
Мейоз состоит из 2 последовательных делений с короткой интерфазой между ними. · Профаза I — профаза первого деления очень сложная и состоит из 5 стадий: · Фаза лептотены или лептонемы — конденсация ДНК с образованием хромосом в виде тонких нитей. · Зиготена или зигонема — конъюгация (соединение) гомологичных хромосом с образованием структур, состоящих из двух соединённых хромосом, называемых тетрадами или бивалентами. · Пахитена или пахинема — кроссинговер (перекрест), обмен участками между гомологичными хромосомами; гомологичные хромосомы остаются соединенными между собой. · Диплотена или диплонема — происходит частичная деконденсация хромосом, при этом часть генома может работать, происходят процессы транскрипции (образование РНК), трансляции (синтез белка); гомологичные хромосомы остаются соединёнными между собой. · Диакинез — ДНК снова максимально конденсируется, синтетические процессы прекращаются, растворяется ядерная оболочка; гомологичные хромосомы остаются соединёнными между собой. · Метафаза I — бивалентные хромосомы выстраиваются вдоль экватора клетки. · Анафаза I — микротрубочки сокращаются, биваленты делятся и хромосомы расходятся к полюсам. Важно отметить, что, из-за конъюгации хромосом в зиготене, к полюсам расходятся целые хромосомы, состоящие из двух хроматид каждая, а не отдельные хроматиды, как в митозе. · Телофаза I — хромосомы деспирализуются и появляется ядерная оболочка. Второе деление мейоза следует непосредственно за первым, без выраженной интерфазы: S-период отсутствует, поскольку перед вторым делением не происходит репликации ДНК. · Профаза II — происходит конденсация хромосом, клеточный центр делится и продукты его деления расходятся к полюсам ядра, разрушается ядерная оболочка, образуется веретено деления. · Метафаза II — унивалентные хромосомы (состоящие из двух хроматид каждая) располагаются на «экваторе» (на равном расстоянии от «полюсов» ядра) в одной плоскости, образуя так называемую метафазную пластинку. · Анафаза II — униваленты делятся и хроматиды расходятся к полюсам. · Телофаза II — хромосомы деспирализуются и появляется ядерная оболочка. В результате из одной диплоидной клетки образуется четыре гаплоидных клетки. В тех случаях, когда мейоз сопряжён с гаметогенезом (например, у многоклеточных животных), при развитии яйцеклеток первое и второе деления мейоза резко неравномерны. В результате формируется одна гаплоидная яйцеклетка и два так называемых редукционных тельца (абортивные дериваты первого и второго делений).
31.Морфология половых клеток.
34.Понятия: генотип, фенотип, признак. аллельные и неаллельные гены, гомозиготные и гетерозиготные организмы, понятие гемизиготности.
Признак - единица морфологической, физиологической, биохимической, иммунологической, клинической и любой другой дискретности организмов (клеток), т.е. отдельное качество или свойство, по которому они отличаются друг от друга.
Генотип — это генетическая конституция организма, представляющая собой совокупность всех наследственных задатков его клеток, заключенных в их хромосомном наборе — кариотипе. Генотип (от ген и тип), совокупность всех генов, локализованных в хромосомах данного организма.
Фенотип (Phenotype) — присущая индивидууму совокупность всех признаков и свойств, которые сформировались в процессе его индивидуального развития. Фенотип - совокупность всех признаков организма, сформировавшаяся во взаимодействии генотипа с окружающей средой.
Гомозиготность, состояние наследственного аппарата организма, при котором гомологичные хромосомы имеют одну и ту же форму данного гена.
Гетерозиготность, присущее всякому гибридному организму состояние, при котором его гомологичные хромосомы несут разные формы (аллели) того или иного гена.
Гемизиготность (от греч hemi- — полу- и zygotós — соединённый вместе), состояние, связанное с тем, что у организма один или несколько генов не парные, т. е. не имеют аллельных партнёров. (В сцепленном с полом наследовании, Хr или ХR — r – дальтонзим) 35.Закономерности наследования при моногибридном скрещивании.
Моногибридное скрещивание — скрещивание форм, отличающихся друг от друга по одной паре альтернативных признаков. 1 закон Менделя: при скрещивании двух гомозиготных организмов, различающихся друг от друга по одной паре альтернативных признаков в первом поколении наблюдается единообразие по генотипу и по фенотипу. (фиброматоз десен — А, здоровые десны — а, ребенок в любом случае болен) 2 закон менделя: при скрещивании 2х гетерозиготных организмов, различающихся по одной паре альтернативных признаков (гибриды F1) в их потомстве (гибриды F2) наблюдает расщепление по фенотипу 3:1, по генотипу 1:2:1 Полное доминирование — явление, при котором один из аллельных генов имеет преобладающее значение и проявляется как в гетерозиготном, так и в гомозиготном состоянии. 36.Дигибридное и полигибридное скрещивание. Закон независимого комбинирования генов и его цитологические основы. Общая формула расщепления при независимом наследовании.
Дигибридное скрещивание - скрещивание форм, различающихся по двум парам изучаемых признаков При скрещивании гомозиготных особей, которые отличаются двумя и большим количеством пар альтернативных признаков, во втором гибридном поколении (при инбридинге гибридов 1 поколения) фиксируют независимое наследование по каждой паре признаков и появляются особи, с новыми сочетаниями признаков, не свойственных родительским и прародительским формам (закон независимого распределения, или III закон Менделя) (Карие глаза — B, голубые — b, правша — A, левша — a) Очевидно, этому закону должны подчиняться в первую очередь неаллельные гены, располагающиеся в разных (негомологичных) хромосомах. В таком случае независимый характер наследования признаков объясняется закономерностями поведения негомологичных хромосом в мейозе. Названные хромосомы образуют со своими гомологами разные пары, или биваленты, которые в метафазе I мейоза случайно выстраиваются в плоскости экватора веретена деления. Затем в анафазе I мейоза гомологи каждой пары расходятся к разным полюсам веретена независимо от других пар. В результате у каждого из полюсов возникают случайные сочетания отцовских и материнских хромосом в гаплоидном наборе (см. рис. 3.75). Следовательно, различные гаметы содержат разные комбинации отцовских и материнских аллелей неал-лельных генов. Разнообразие типов гамет, образуемых организмом, определяется степенью его гетерозиготности и выражается формулой 2 n, где n — число локусов в гетерозиготном состоянии. В связи с этим дигетерозиготные гибриды F1 образуют четыре типа гамет с одинаковой вероятностью. Реализация всех возможных встреч этих гамет при оплодотворении приводит к появлению в F2 четырех фенотипических групп потомков в соотношении 9:3:3:1. Анализ потомков F2 по каждой паре альтернативных признаков в отдельности выявляет расщепление в соотношении 3:1. 37.Множественные аллели. Наследование групп крови человека системы АВО.
Множественный аллелизм — различные состояния (три и более) одного и того же локуса хромосом, возникшие в результате мутаций. Присутствие в генофонде вида одновременно различных аллелей гена называют множественным аллелизмом. Примером этому служат разные варианты окраски глаз у плодовой мухи: белая, вишневая, красная, абрикосовая, эозиновая,— обусловленные различными аллелями соответствующего гена. У человека, как и у других представителей органического мира, множественный аллелизм свойствен многим генам. Так, три аллеля гена I определяют групповую принадлежность крови по системе АВ0 (IA, IB, I0). Два аллеля имеет ген, обусловливающий резус-принадлежность. Более ста аллелей насчитывают гены α- и β-полипептидов гемоглобина. Причиной множественного аллелизма являются случайные изменения структуры гена (мутации), сохраняемые в процессе естественного отбора в генофонде популяции. Многообразие аллелей, рекомбинирующихся при половом размножении, определяет степень генотипического разнообразия среди представителей данного вида, что имеет большое эволюционное значение, повышая жизнеспособность популяций в меняющихся условиях их существования. Кроме эволюционного и экологического значения аллельное состояние генов оказывает большое влияние на функционирование генетического материала. В диплоидных соматических клетках эукариотических организмов большинство генов представлено двумя аллелями, которые совместно влияют на формирование признаков. 38.Взаимодействие неаллельных генов: комплементарность, эпистаз, полимерия, модифицирующее действие.
Комплементарность — такой тип взаимодействия, когда 2 неаллельных гена, попадая в генотип в доминирующем состоянии, совместно определяют появление нового признака, который каждый из них по отдельности не детерминирует.(R- розовидный гребень, P – гороховидный, rp – листовидный, RP – ореховидный) Если присутствует один из пары – проявляется он. Примером служат группы крови у человека. Комплементарность может быть доминантная и рецессивная. Для того чтобы человек имел нормальный слух, необходимо чтобы работали, согласовано многие гены, и доминантные и рецессивные. Если, хотя бы по одному гену он будет гомозиготен по рецессиву – слух будет ослаблен.
Эпистаз — маскирование генов одной аллельной пары генами другой. Эпистаз (от греч. epi - над + stasis -- препятствие) -- взаимодействие неаллельных генов, при котором наблюдается подавление проявления одного гена действием другого, неаллелъного гена. Ген, подавляющий фенотипические проявления другого, называется эпистатичным; ген, чья активность изменена или подавлена, называется гипостатичным. Это обусловлено тем, что ферменты катализируют разные процессы клетки, Когда на одном метаболическом пути действуют несколько генов. Действие их должно быть согласовано во времени. Механизм: если В выключится, он замаскирует действие С
Полимерия — явление, когда различные неаллельные гены могут оказывать однозначное действие на один и тот же признак, усиливая его проявление. Наследование признаков при полимерном взаимодействии генов. В том случае, когда сложный признак определяется несколькими парами генов в генотипе и их взаимодействие сводится к накоплению эффекта действия определенных аллелей этих генов, в потомстве гетерозигот наблюдается разная степень выраженности признака, зависящая от суммарной дозы соответствующих аллелей. Например, степень пигментации кожи у человека, определяемая четырьмя парами генов, колеблется от максимально выраженной у гомозигот по доминантным аллелям во всех четырех парах (Р1Р1Р2Р2Р3Р3Р4Р4) до минимальной у гомозигот по рецессивным аллелям (р1р1р2р2р3р3р4р4) (см. рис. 3.80). При браке двух мулатов, гетерозиготных по всем четырем парам, которые образуют по 24 = 16 типов гамет, получается потомство, 1/256 которого имеет максимальную пигментацию кожи, 1/256 — минимальную, а остальные характеризуются промежуточными показателями экспрессивности этого признака. В разобранном примере доминантные аллели полигенов определяют синтез пигмента, а рецессивные — практически не обеспечивают этого признака. В клетках кожи организмов, гомозиготных по рецессивным аллелям всех генов, содержится минимальное количество гранул пигмента. В некоторых случаях доминантные и рецессивные аллели полигенов могут обеспечивать развитие разных вариантов признаков. Например, у растения пастушьей сумки два гена одинаково влияют на определение формы стручочка. Их доминантные аллели образуют одну, а рецессивные — другую форму стручочков. При скрещивании двух дигетерозигот по этим генам (рис. 6.16) в потомстве наблюдается расщепление 15:1, где 15/16 потомков имеют от 1 до 4 доминантных аллелей, а 1/16, не имеет доминантных аллелей в генотипе. Если гены располагаются, каждый в своем отдельном локусе, но их взаимодействие проявляется в одном и том же направлении – это полигены. Один ген проявляет признак незначительно. Полигены дополняют друг друга и оказывают мощное действие – возникает полигенная система – т.е. система является результатом действия одинаково направленных генов. Гены подвергаются значительному влиянию главных генов, которых более 50. полигенных систем известно множество. При сахарном диабете наблюдается умственная отсталость. Рост, уровень интеллекта - определяются полигенными системами
Модифицирующее действие. Гены модификаторы сами по себе не определяют какой- то признак, но могут усиливать или ослаблять действие основных генов, вызывая таким образом изменение фенотипа. В качестве примера обычно приводится наследование пегости у собак и лошадей. Числового расщепления никогда не даётся, так как характер наследования больше напоминает полигенное наследование количественных признаков. 1919 год Бриджес ввел термин ген-модификатор. Теоретически любой ген может взаимодействовать с другими генами, а значит, и проявлять модифицирующее действие, но некоторые гены – модификаторы в большей степени. Они часто не имеют собственного признака, но способны усиливать или ослаблять проявление признака, контролируемого другим геном. В формировании признака кроме основных генов проявляют свое действие и модифицирующие гены. Брахидактилия – может быть резкая или незначительная. Помимо основного гена, есть еще модификатор, который усиливает эффект. Окраска млекопитающих – белая, черная + модификаторы. 39.Хромосомная теория наследственности. Сцепление генов. Группы сцепления. Кроссинговер как механизм, определяющий нарушения сцепления генов.
Дата добавления: 2015-04-24; Просмотров: 588; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |