Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Геометрический смысл производной - Тангенс угла наклона касательной прямой




Если функция имеет конечную производную в точке x 0, то в окрестности U (x 0) её можно приблизить линейной функцией

fl (x) = f (x 0) + f '(x 0)(xx 0).

Функция fl называется касательной к f в точке x 0. Число f '(x 0) является угловым коэффициентом или тангенсом угла наклона касательной прямой.

Физический смысл производной – Скорость изменения функции.

Пусть s = s (t) — закон прямолинейного движения. Тогда v (t 0) = s '(t 0) выражает мгновенную скорость движения в момент времени t 0. Вторая производная a (t 0) = s ''(t 0) выражает мгновенное ускорение в момент времени t 0.

Вообще производная функции y = f (x) в точке x 0 выражает скорость изменения функции в точке x 0, то есть скорость протекания процесса, описанного зависимостью y = f (x).

Вопрос 78. Экстремум функции: максимум и минимум. Достаточный и необходимый признаки экстремума.

Экстремум (лат. extremum — крайний) в математике — максимальное или минимальное значение функции на заданном множестве. Точка, в которой достигается экстремум называется точкой экстремума. Соответственно, если достигается минимум — точка экстремума называется точкой минимума, а если максимум — точкой максимума. В математическом анализе выделяют также понятие локальный экстремум (соответственно минимум или максимум).

Необходимый признак существования экстремума: если х = а является точкой экстремума функции y = f(x) и производная в этой точке существует, то она равна нулю: f'(a) = 0.

Достаточный признак существования экстремума: если производная f'(x) при переходе х через а меняет знак, то а является точкой экстремума.

Если при переходе через критическую точку x0 производная f'(x) меняет знак, то функция f(x) имеет в точке x0 экстремум: минимум в том случае, когда производная меняет знак с минуса на плюс, и максимум ― когда с плюса на минус.

Если же при переходе через критическую точку x0 производная f'(x) не имеет знака, то функция f(x) в точке x0 не имеет экстремума.




Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 1339; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.