Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Современные направления исследований в области ИИ




"Машинный интеллект" и робототехника.

История развития систем ИИ

Исторически сложились три основных направления в моделировании ИИ.

В рамках первого подхода объектом исследований являются структура и механизмы работы мозга человека, а конечная цель заключается в раскрытии тайн мышления. Необходимыми этапами исследований в этом направлении являются построение моделей на основе психофизиологических данных, проведение экспериментов с ними, выдвижение новых гипотез относительно механизмов интеллектуальной деятельности, совершенствование моделей и т. д.

Второй подход в качестве объекта исследования рассматривает ИИ. Здесь речь идет о моделировании интеллектуальной деятельности с помощью вычислительных машин. Целью работ в этом направлении является создание алгоритмического и программного обеспечения вычислительных машин, позволяющего решать интеллектуальные задачи не хуже человека.

Наконец, третий подход ориентирован на создание смешанных человеко-машинных, или, как еще говорят, интерактивных интеллектуальных систем, на симбиоз возможностей естественного и искусственного интеллекта. Важнейшими проблемами в этих исследованиях является оптимальное распределение функций между естественным и искусственным интеллектом и организация диалога между человеком и машиной.

Самыми первыми интеллектуальными задачами, которые стали решаться при помощи ЭВМ были логические игры (шашки, шахматы), доказательство теорем. Хотя, правда здесь надо отметить еще кибернетические игрушки типа "электронной мыши" Клода Шеннона, которая управлялась сложной релейной схемой. Эта мышка могла "исследовать" лабиринт, и находить выход из него. А кроме того, помещенная в уже известный ей лабиринт, она не искала выход, а сразу же, не заглядывая в тупиковые ходы, выходила из лабиринта.

Очень большим направлением систем ИИ является роботехника. В чем основное отличие интеллекта робота от интеллекта универсальных вычислительных машин?

Первых роботов трудно назвать интеллектуальными. Только в 60-х годах появились очуствленные роботы, которые управлялись универсальными компьютерами. К примеру в 1969 г. в Электротехнической лаборатории (Япония) началась разработка проекта "промышленный интеллектуальный робот". Цель этой разработки — создание очуствленного манипуляционного робота с элементами искусственного интеллекта для выполнения сборочно-монтажных работ с визуальным контролем.

Манипулятор робота имеет шесть степеней свободы и управляется мини-ЭВМ NEAC-3100 (объем оперативной памяти 32000 слов, объем внешней памяти на магнитных дисках 273000 слов), формирующей требуемое программное движение, которое отрабатывается следящей электрогидравлической системой. Схват манипулятора оснащен тактильными датчиками.

В качестве системы зрительного восприятия используются две телевизионные камеры, снабженные красно-зелено-синими фильтрами для распознавания цвета предметов. Поле зрения телевизионной камеры разбито на 64*64 ячеек. В результате обработки полученной информации грубо определяется область, занимаемая интересующим робота предметом. Далее, с целью детального изучения этого предмета выявленная область вновь делится на 4096 ячеек. В том случае, когда предмет не помещается в выбранное "окошко ", оно автоматически перемещается, подобно тому, как человек скользит взглядом по предмету. Робот Электротехнической лаборатории был способен распознавать простые предметы, ограниченные плоскостями и цилиндрическими поверхностями при специальном освещении. Стоимость данного экспериментального образца составляла примерно 400000 долларов.

Постепенно характеристики роботов монотонно улучшались, Но до сих пор они еще далеки по понятливости от человека, хотя некоторые операции уже выполняют на уровне лучших жонглеров. К примеру удерживают на лезвии ножа шарик от настольного тенниса.

Еще пожалуй здесь можно выделить работы киевского Института кибернетики, где под руководством Н. М. Амосова и В. М. Глушкова (ныне покойного) ведется комплекс исследований, направленных на разработку элементов интеллекта роботов. Особо е внимание в этих исследованиях уделяется проблемам распознавания изображений и речи, логического вывода (автоматического доказательства теорем) и управления с помощью нейроподобных сетей.

Сенсорная система включает в себя следующие средства очуствления: оптический дальномер, навигационная система с двумя радиомаяками и компасом, контактные датчики, датчики углов наклона тележки, таймер и др. И особенность, которая отличает ТАИР от многих других систем, созданных у нас и за рубежом, это то, что в его составе нет компьютера в том виде, к которому мы привыкли. Основу системы управления составляет бортовая нейроподобная сеть, на которой реализуются различные алгоритмы обработки сенсорной инф ормации, планирования поведения и управления движением робота.

Научное направление, связанное с машинным моделированием человече­ских интеллектуальных функций - искусственный интеллект - возникло в середине 60-х годов XX столетия. Его возникновение непосредственно свя­зано с общим направлением научной и инженерной мысли, которое привело к созданию компьютера - направлением на автоматизацию человеческой ин­теллектуальной задачи, считавшиеся прерогативой человека, решались тех­ническими средствами.

Говоря о сложных интеллектуальных задачах следует понимать, что все его 300-400 лет назад перемножение больших чисел вполне относилось к та­ковым; однако, усвоив в детстве правило умножения столбиком, современ­ный человек пользуется им не задумываясь, и вряд ли эта задача сегодня яв­ляется «сложной интеллектуальной». По-видимому, в круг таковых следует включить те задачи, для решения которых нет «автоматических» правил, т. е. нет алгоритма (пусть даже и очень сложного), следование которому всегда приводит к успеху. Если для решения задачи, которая нам сегодня представ­ляется относящейся к указанному кругу, в будущем придумают четкий алго­ритм, она перестанет быть «сложной интеллектуальной».

Несмотря на свою краткость, история исследований и разработок сис­тем искусственного интеллекта может быть разделена на четыре перио­да;

• 60-е - начало 70-х годов XX века - исследования по «общему интеллекту», попытки смоделировать общие интеллектуальные процессы, свойственные человеку: свободный диалог, решение разнообразных задач, доказательство теорем, различные игры (типа шашек, шахмат и т.д.), сочинение стихов и музыки и т.д.;

• 70-е годы - исследования и разработка подходов к формальному
представлению знаний и умозаключений, попытки свести интел­лектуальную деятельность к формальным преобразованиям сим­
волов, строк и т.д.;

• с конца 70-х годов - разработка специализированных на опреде­ленных предметных областях интеллектуальных систем, имею­щих прикладное практическое значение (экспертных систем);

• 90-е годы - фронтальные работы по созданию ЭВМ 5-го поколе­ния, построенных на иных принципах, чем обычные универ­сальные ЭВМ, и программного обеспечения для них.

В настоящее время «искусственный интеллект» - мощная ветвь информа­тики, имеющая как фундаментальные, чисто научные основы, так и весьма развитые технические, прикладные аспекты, связанные с созданием и экс­плуатацией работоспособных образцов интеллектуальных систем. Значение этих работ для развития информатики таково, что именно от их успеха зави­сит появление ЭВМ нового 5-го поколения. Именно этот качественный ска­чок возможностей компьютеров - обретение ими в полной мере интеллекту­альных возможностей - положен целью развития вычислительной техники в ближайшей перспективе и является признаком компьютерной техники ново­го поколения.

Любая задача, для которой не известен алгоритм решения, может быть от­несена к сфере искусственного интеллекта. Примерами могут быть игра в шахматы, медицинская диагностика, составление резюме текста или перево­да его на иностранный язык - для решения этих задач не существует четких алгоритмов. Еще две характерные особенности задач искусственного интел­лекта: преобладающее использование информации в символьной(а не в чи­словой) форме и наличие выбора между многими вариантами в условиях не­определенности.

Перечислим отдельные направления, где применяются методы искус­ственного интеллекта.

1. Восприятие и распознавание образов. Под этим понимаются не
просто технические системы, воспринимающие визуальную и зву­ковую информацию, кодирующие и размещающие её в памяти, проблемы понимания и логического рассуждения в процессе обра­ботки визуальной и речевой информации.

2. Математика и автоматическое доказательство теорем.

3. Игры. Как и формальные системы в математике, игры, характери­зующиеся конечным числом ситуаций и четко определенными пра­вилами, с самого начала исследований по искусственному интел­лекту привлекли к себе внимание как предпочтительные объекты исследования, полигон для применения новых методов. Интеллектуальными системами был быстро достигнут и превзойден уровень человека средних способностей, однако уровень лучших специали­стов не достигнут до сих пор. Возникшие трудности оказались ха­рактерными и для многих других ситуаций, так как в своих «локальных» действиях человек использует весь объем знаний, кото­рый он накопил за всю свою жизнь.

4. Решение задач. В данном случае понятие «решение» используется в широком смысле, относится к постановке, анализу и представле­нию конкретных ситуаций, а рассматриваемые задачи - те, которые
встречаются в повседневной жизни, для решения которых требует­ся изобретательность и способность к обобщению.

5. Понимание естественного языка. Здесь ставится задача анализа и генерации текстов, их внутреннего представления, выявление знаний, необходимых для понимания текстов. Трудности связаны, в частности, с тем, что значительная часть информации в обычном диалоге не выражается определенно и ясно. Предложениям естест­венного языка присуща:

• неполнота;

• неточность;

• нечеткость;

• грамматическая некорректность;

• избыточность;

• зависимость от контекста;

• неоднозначность.

Однако такие свойства языка, являющегося результатом много­векового исторического развития, служат условием функциониро­вания языка как универсального средства общения. Вместе с тем, понимание предложений естественного языка техническими сис­темами с трудом поддается моделированию из-за этих особенно­стей языка. В технических системах должен использоваться фор­мальный язык, смысл предложения которого однозначно опреде­ляется их формой. Перевод с естественного языка на формальный является нетривиальной задачей.

6. Выявление и представление знаний в экспертных системах. Экспертные системы - интеллектуальные системы, вобравшие в се­бя знания специалистов в конкретных видах деятельности - имеют большое практическое значение, с успехом применяются во многих областях, таких как автоматизированное проектирование, медицин­ская диагностика, химический анализ и синтез и т.д.

Во всех этих направлениях главные трудности связаны с тем, что недоста­точно изучены и поняты принципы человеческой интеллектуальной деятель­ности, процесс принятия решений и решение задач. Если в 60-х годах широ­ко обсуждался вопрос «может ли компьютер мыслить», то теперь вопрос ста­вится иначе: «достаточно ли хорошо человек понимает, как он мыслит, чтобы передать эту функцию компьютеру»?

. «Машинный интеллект» и робототехника.

Исторически сложились три основных направления в моделировании ИИ.

В рамках первого подхода объектом исследований являются структура и механизмы работы мозга человека, а конечная цель заключается в раскрытии тайн мышления. Необходимыми этапами исследований в этом направлении являются построение моделей на основе психофизиологических данных, проведение экспериментов с ними, выдвижение новых гипотез относительно механизмов интеллектуальной деятельности, совершенствование моделей и т. д.

Второй подход в качестве объекта исследования рассматривает ИИ. Здесь речь идет о моделировании интеллектуальной деятельности с помощью вычислительных машин. Целью работ в этом направлении является создание алгоритмического и программного обеспечения вычислительных машин, позволяющего решать интеллектуальные задачи не хуже человека.

Наконец, третий подход ориентирован на создание смешанных человеко-машинных, или, как еще говорят, интерактивных интеллектуальных систем, на симбиоз возможностей естественного и искусственного интеллекта. Важнейшими проблемами в этих исследованиях является оптимальное распределение функций между естественным и искусственным интеллектом и организация диалога между человеком и машиной.

Самыми первыми интеллектуальными задачами, которые стали решаться при помощи ЭВМ были логические игры (шашки, шахматы), доказательство теорем. Хотя, правда здесь надо отметить еще кибернетические игрушки типа "электронной мыши" Клода Шеннона, которая управлялась сложной релейной схемой. Эта мышка могла "исследовать" лабиринт, и находить выход из него. А кроме того, помещенная в уже известный ей лабиринт, она не искала выход, а сразу же, не заглядывая в тупиковые ходы, выходила из лабиринта.

Очень большим направлением систем ИИ является робототехника.

Первых роботов трудно назвать интеллектуальными. Только в 60-х годах появились очуствленные роботы, которые управлялись универсальными компьютерами. К примеру в 1969 г. в Электротехнической лаборатории (Япония) началась разработка проекта "промышленный интеллектуальный робот". Цель этой разработки — создание очуствленного манипуляционного робота с элементами искусственного интеллекта для выполнения сборочно-монтажных работ с визуальным контролем.

Манипулятор робота имеет шесть степеней свободы и управляется мини-ЭВМ NEAC-3100 (объем оперативной памяти 32000 слов, объем внешней памяти на магнитных дисках 273000 слов), формирующей требуемое программное движение, которое отрабатывается следящей электрогидравлической системой. Схват манипулятора оснащен тактильными датчиками.

В качестве системы зрительного восприятия используются две телевизионные камеры, снабженные красно-зелено-синими фильтрами для распознавания цвета предметов. Поле зрения телевизионной камеры разбито на 64*64 ячеек. В результате обработки полученной информации грубо определяется область, занимаемая интересующим робота предметом. Далее, с целью детального изучения этого предмета выявленная область вновь делится на 4096 ячеек. В том случае, когда предмет не помещается в выбранное "окошко ", оно автоматически перемещается, подобно тому, как человек скользит взглядом по предмету. Робот Электротехнической лаборатории был способен распознавать простые предметы, ограниченные плоскостями и цилиндрическими поверхностями при специальном освещении. Стоимость данного экспериментального образца составляла примерно 400000 долларов.

Постепенно характеристики роботов монотонно улучшались, Но до сих пор они еще далеки по понятливости от человека, хотя некоторые операции уже выполняют на уровне лучших жонглеров. К примеру, удерживают на лезвии ножа шарик от настольного тенниса.

Еще, пожалуй, здесь можно выделить работы киевского Института кибернетики, где под руководством Н. М. Амосова и В. М. Глушкова (ныне покойного) ведется комплекс исследований, направленных на разработку элементов интеллекта роботов. Особо е внимание в этих исследованиях уделяется проблемам распознавания изображений и речи, логического вывода (автоматического доказательства теорем) и управления с помощью нейроподобных сетей.

Сенсорная система включает в себя следующие средства очувствления: оптический дальномер, навигационная система с двумя радиомаяками и компасом, контактные датчики, датчики углов наклона тележки, таймер и др. И особенность, которая отличает ТАИР от многих других систем, созданных у нас и за рубежом, это то, что в его составе нет компьютера в том виде, к которому мы привыкли. Основу системы управления составляет бортовая нейроподобная сеть, на которой реализуются различные алгоритмы обработки сенсорной информации, планирования поведения и управления движением робота.





Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 884; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.