Пересекающиеся прямые: лежат в одной плоскости, имеют одну общую точку.
Параллельные прямые: лежат в одной плоскости, не имеют общих точек (не пересекаются)
Скрещивающиеся прямые: не лежат в одной плоскости, не имеют общих точек (не пересекаются)
Параллельность плоскостей Две плоскости называются параллельными, если они не пересекаются, т.е. не имеют ни одной общей точки. α∥β.
Признак параллельности двух плоскостей
Теорема. Если две пересекающиеся прямые одной плоскости параллельны двум пересекающимся прямым другой плоскости, то эти плоскости параллельны. Если а ∥ а1 и b ∥ b1, то α∥β.
Свойства параллельных плоскосте й
Вели α∥β и они пересекаются с γ, то а ∥ b.
Если две параллельные плоскости пересечены третьей, то линии их пересечения параллельны.
Если α∥β и AB∥CD, то АВ = CD. Отрезки параллельных прямых, заключенные между параллельными плоскостями, равны.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление