КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Глобальная средняя годовая эффективная доза внутреннего облучения за счет вдыхания радона 1,2 мЗв
Радон и уровни облучения населения радоном. Оптимизация дозовых нагрузок, создаваемых радоном и продуктами его распада, на жителей Республики Беларусь. Радон - это бесцветный, невидимый, не имеющий вкуса и запаха инертный газ, примерно в 7,5 раза тяжелее воздуха; образуется в процессе радиоактивного распада радионуклидов урановых и ториевого рядов. Существует три естественных (природных) изотопа радона: - радон-222 (Т1/2 - 3,8 дня; ряд распада U -238), - радон-220 или торон (Т1/2 - 55 секунд; ряд распада Th-232), - радон-219 или актинон (Т1/2 -4 секунды; ряд распада U-235). Все изотопы радона являются альфа-излучателями; дальнейший распад их дочерних продуктов сопровождается испусканием альфа- и бета-частиц. Большая часть радона и торона физически связана с материалом, в котором находятся их предшественники. Однако некоторая часть может диффундировать от места образования в другую среду. Из-за относительно большого периода полураспада радон-222 может диффундировать на большие расстояния (в пределах нескольких метров). Миграция актинона ограничивается несколькими миллиметрами и обычно он не достигает поверхности материала. Небольшая часть торона может выделяться и мигрировать в пределах нескольких сантиметров. Поэтому, за исключением богатых торием мест, концентрации радона-219 и 220 пренебрежимо малы, по сравнению с радоном-222. Основные источники радона: грунт, строительные материалы, грунтовые воды, природный газ, уголь, рудники, отвалы, образующиеся при добыче фосфорных удобрений, растения, геотермальные электростанции, предприятия ядерного топливного цикла. Главный источник поступления радона в атмосферу - почва и грунтовые породы. Средние концентрации радона в почвенном воздухе на несколько порядков выше его концентраций в атмосферном воздухе, вследствие чего происходит постоянное выделение почвенного радона в атмосферу путем диффузии. После выхода газа в окружающую водную или воздушную среду дальнейшее перемещение происходит за счет диффузии, конвекции и геомеханических сил. Факторы, влияющие на процесс попадания радона в воздух из почвы: а) снижающие интенсивность эксгаляции радона: дождь, снег, мороз, повышение атмосферного давления (поэтому в почве радона больше зимой и в периоды дождей) б) усиливающие интенсивность эксгаляции радона: повышение температуры, увеличение скорости ветра Перенос и рассеяние радона в воздухе зависят от: а) вертикального градиента температур б) направления и силы ветра в) турбулентности воздуха. В результате процессов температурной конвекции и действия ветров в атмосфере происходит турбулентная диффузия, эффективно рассеивающая радон. Суточный максимум концентрации наблюдается в ночные часы, когда атмосфера наименее подвижна, а минимум наблюдается днем, когда вертикальное смешивание благодаря турбулентной диффузии максимально. На высоте нескольких метров от земли концентрация радона падает уже в десятки раз. С геологической точки зрения более 40 % территории РБ являются потенциально радоноопасными. Наиболее потенциально радоноопасные следующие территории: а) на юге республики - зоны, связанные с Микашевичско-Житковичским горстом и выступами Украинского кристаллического щита б) на западе республики - территория, связанная с Белорусским кристаллическим массивом. Содержание радона в почвенном воздухе зон активных разломов возрастает до 15,0-20,0 кБк/м3 (при среднефоновых концентрациях около 1,0 кБк/м3). В г. Минске эти разломы создают серьезную опасность радонового загрязнения воздуха жилых и производственных помещений. Обычная концентрация радона в домах 30 Бк/м3, в отдельных случаях она достигает в воздухе жилых помещений 400 Бк/м3 (например, Дзержинский район Минской области). Индивидуальные дозы облучения легких при этом могут достигать 20-30 мЗв/год. Радон и продукты его распада появляются внутри помещений вследствие их эксгаляции из стен, потолков, полов. Более радиоактивные материалы: фосфогипс, газобетон с квасцовым глинистым сланцем и отвалы урановых рудников, материалы с низкой активностью: дерево, природный гипс, песок и гравий. В новых помещениях среднегодовая эквивалентная равновесная концентрация радона должна быть не выше 70 Бк/м3. В РБ в соответствии с НРБ-2000 предусмотрено: - при проектировании новых зданий жилищного и общественного назначения среднегодовая эквивалентная равновесная объемная активность дочерних продуктов радона и торона в воздухе помещений не должна превышать 100 Бк/м3, а мощность эффективной дозы гамма-излучения не должна превышать мощность дозы на открытой местности более чем на 0,2 мкЗв/ч - в эксплуатируемых зданиях среднегодовая эквивалентная равновесная объемная активность дочерних продуктов радона и торона в воздухе жилых помещений не должна превышать 200 Бк/м3. При более высоких значениях объемной активности должны проводится защитные мероприятия, направленные на снижение поступления радона в воздух помещений и улучшение вентиляции помещений. Защитные мероприятия должны проводится также, если мощность эффективной дозы гамма-излучения в помещении превышает мощность дозы на открытой местности более чем на 0,2 мкЗв/ч. Радон, содержащийся в воде, нередко бывает значительным источником радона и продуктов его распада в воздухе жилых и производственных помещений. При кипячении воды основная масса радона улетучивается. Концентрация радона в ванной комнате в 40 раз выше, чем в жилых комнатах. Основные источники радона в помещениях: трещины в плитах фундамента, поры в кирпичных стенах, трещины в строительных блоках, неполная изоляция грунта, дренажная плитка, плохое цементирование блоков, плохая герметизация труб, открытый верх фундамента, строительные материалы, вода. Суммарно концентрация радона в воздухе жилых помещений зависит от четырех факторов: - активной и пассивной диффузии радона из грунта через фундамент и поверхности подвальных помещений зданий - эксгаляции радона из строительных материалов и изделий, из которых построено здание - эксгаляции радона из воды и газа - влияния климата, образа жизни, степени вентиляции помещения. Меры, направленные на снижение концентрации радона в воздухе помещений (оптимизация дозовых нагрузок): - тщательная изоляция жилых помещений от почвы и грунта (герметичный бетонный цоколь) - изоляция стройматериалов (обычная покраска и оклеивание стен обоями) - улучшение вентиляции жилых помещений и активная вентиляция погребов - регулярная влажная уборка - использование материалов, отвечающих требованиям радиационной безопасности. Дозы облучения за счет радона. Основную часть дозы человек получает в закрытых помещениях (концентрация радона в закрытых помещениях в зонах с умеренным климатом в среднем в 8 раз выше, чем в наружном воздухе). Концентрация дочерних продуктов распада превышает концентрацию радона более чем в 200 раз. Наиболее опасен ингаляционный путь поступления в организм изотопов радона и их дочерних продуктов распада, что связано с хорошей поглощающей способностью органов дыхания. Полнота осаждения аэрозолей зависит от ряда факторов: - концентрации аэрозольных частиц и их физико-химического состояния - частоты и глубины дыхания, индивидуальных особенностей дыхательной системы - размеров частиц Из-за короткого периода нахождения в легких (акт дыхания) сам радон не играет роли первичного фактора, обусловливающего дозовую нагрузку на легкие, все дочерние продукты распада радона-222 (полоний-218, свинец-214, висмут-214, полоний-214 и свинец-210) также быстро удаляются из легких. Часть продуктов распада радона, образующихся в воздухе помещений, взаимодействует с аэрозольными частицами и формирует основную дозу облучения. Связанные продукты распада радона могут накапливаться при дыхании в носоглотке, трахее, легочной паренхиме. Осевшие частицы подвергаются распаду путем испускания альфа-, бета-частиц или гамма-квантов, при этом опасность представляет в основном альфа-излучение. Тканью-мишенью накопления дочерних продуктов распада радона в дыхательном тракте является эпителий в трахеобронхиальной области и альвеолярная область в легких. Биологический период полувыведения продуктов распада радона составляет от 10 мин до 4,8 час для трахеобронхиальной области и от 6 до 60 час для легких Наиболее важными факторами, влияющими на формирование дозы на дыхательный тракт, являются: - концентрация радона в помещениях; - фактор равновесия продуктов распада; - характеристика аэрозолей, их задержание и очистка в дыхательных путях; - величина дыхания; - время амортизации жилища. В настоящее время считается, что концентрация радона в помещениях в 20 Бк/м3 увеличивает дозу облучения на 1 мЗв. Доза на дыхательный тракт сильно зависит от возраста, она максимально в возрасте около 6 лет (ротовое дыхание у ребенка ведет к большему поступлению радона, чем дыхание через нос). Медицинские последствия облучения радоном: - радон - эпидемиологически доказанный фактор риска рака легкого (на втором месте после курения) - растворимость радона в липидах примерно в 15 раз выше, чем в крови, а костный мозг взрослых содержит до 40 г жира, поэтому в тот же возрастной период, когда у человека формируется максимальная эффективная доза от облучения радоном, наблюдается всплеск заболеваемости острым миелоидным лейкозом. 17. Техногенно измененный радиационный фон: вклад основных составляющих в формирование эффективных доз облучения населения. Источники ионизирующего излучения, используемые в медицине, их вклад в формирование эффективных доз облучения населения. Техногенно изменный радиационный фон формируется в результате деятельности человека за счет: а) источников ионизирующих излучений, используемых в медицине: диагностическое облучение характеризуется низкими дозами, получаемыми пациентами (типичные эффективные дозы находятся в диапазоне 1-10 мЗв), терапевтическое облучение сопряжено с гораздо большими дозами, точно подводимыми к объему опухоли (типичны назначаемые дозы в диапазоне 20-60 Гр). По оценке НКДАР ООН ожидается дальнейшее увеличение использования излучения в медицине: - увеличится использование рентгеновского излучения за счет возрастания значения компьютерной томографии и интервенционных процедур - возрастет использование радиофармпрепаратов для диагностики и терапии (применение новых и более избирательных средств) - возрастет потребность в лучевой терапии вследствие старения населения. Среднемировое значение индивидуальной дозы облучения всего тела вследствие медицинских процедур 0,4 - 1,0 мЗв/год. В 1996 году облучение населения РБ за счет медицинских источников оценивалось в 2,0 - 2,5 мЗв/год (для сравнения по данным индивидуального дозиметрического контроля в 1996 г. индивидуальные дозы работников рентгенкабинетов и радиоизотопных лабораторий составляли 2,5 - 6,3 мЗв/год). Для жителей РБ важно снижать дозовые нагрузки за счет медицинских источников. б) глобальных выпадений радионуклидов -выпадения радионуклидов, обнаруживаемые вдали от места выброса, т.е. практически в любой точке Земного шара. Это происходит, когда радионуклиды попадают в верхние слои тропосферы (могут находиться там до 30 суток) и стратосферу (могут находится там от нескольких месяцев или лет), а затем долгое время выпадают в различном количестве на разные участки поверхности всего Земного шара. Глобальные выпадения делятся на 2 группы: А. Глобальные выпадения радионуклидов за счет испытаний ядерного оружия - максимум испытаний приходится на 2 периода: 1) 1954 - 1958 гг., когда взрывы проводили США, СССР и Великобритания; 2) 1961 - 1962 гг., когда взрывы проводили в основном США и СССР. Каждое испытание ядерного оружия в атмосфере приводило к неконтролируемому выбросу в окружающую среду значительных количеств радиоактивных материалов, которые распылялись на широких пространствах в атмосфере и осаждались повсюду на земную поверхность. Пиковое значение средняя годовая эффективная доза достигла в 1963 году (150 мкЗв) и с тех пор уменьшалась (в 2000 г. - 5 мкЗв). Средние годовые дозы на 10 % выше в северном полушарии, где большей частью проводили испытания, чем в южном. Дозы облучения при испытаниях ядерного оружия формируются за счет разных радионуклидов: а) в ближайшее время после взрыва максимальное значение имеют радионуклиды с Т1/2 от нескольких суток до 2 месяцев (I-131, Ba-140, Sr-89, Zr-95). б) радионуклиды с Т1/2 примерно 30 лет представляют наибольшую потенциальную опасность (Cs-137 и Sr-90) в) радионуклид с Т1/2 = 5730 лет (С-14) будет оставаться источником радиоактивных излучений с низкой мощностью дозы даже в отдаленном будущем. Б. Глобальные выпадения радионуклидов за счет деятельности предприятий ядерно-топливного цикла - подробнее см. вопрос 18. в) стройматериалов -формируют эффективную дозу 0,1 мЗв/год. Если человек находится в помещении, доза внешнего облучения изменяется под влиянием двух противоположно действующих факторов: 1) экранирование внешнего излучения зданием; 2) излучение естественных радионуклидов, находящихся в материалах, из которых построено здание. В зависимости от концентрации К-40, Ra-226, U-238 и Th-232 в различных стройматериалах мощность дозы в домах меняется от 0,04 до 0,12 мкГр/ч). В среднем, в кирпичных, бетонных зданиях мощность дозы в 2-3 раза больше, чем в деревянных домах и в домах из синтетических материалов. Чем больше отходов производства пошло на изготовление стройматериала, тем выше может быть его удельная активность. Снижение облучения населения достигается регламентацией эффективной удельной активности (Аэфф) природных радионуклидов в строительных материалах (в соответствии с НРБ-2000 для материалов, используемых в строящихся и реконструируемых жилых и общественных зданиях Аэфф < 370 Бк/кг). г) телевидения - источник мягкого рентгеновского излучения. Мощность эффективной дозы облучения всего тела от цветного телевизора на расстоянии 250 см от экрана равна 2,5*10-3 мкЗв/ч. Ежедневный в течение года трехчасовой просмотр цветных телепрограмм формирует дозу 5 - 7 мкЗв. За счет телевидения формируется средняя взвешенная годовая эффективная доза 0,01 мЗв. д) авиации - увеличивает облучение человека за счет радиационного фона, создаваемого космическими лучами, что ведет к формированию годовой эффективной дозы 0,05 мЗв. Профессиональное облучение - облучение на работе, непосредственно ею обусловленное (работа на ядерных установках или в радиологической клинике, в условиях повышенных уровней естественного облучения). Вклад основных составляющих техногенного фона в формирование глобальной годовой подушной эффективной дозы облучения:
Дата добавления: 2015-04-24; Просмотров: 1125; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |