Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Статистические ряды




Статистический ряд распределения – это упорядоченное распределение единиц изучаемой совокупности на группы по определенному варьирующему признаку. Он, являясь разновидностью структурной группировки, характеризует состав (или структуру) изучаемого явления, позволяет судить об однородности совокупности, закономерности распределения и границах варьирования единиц совокупности.

Ряды распределения, построенные по атрибутивному признаку, называются атрибутивными (распределение населения по полу, занятости, профессии и т.д.).

Ряды, построенные по количественному признаку вариационными (распределение населения по стажу работы, з/п, возрасту.).

В зависимости от характера вариации признака различают дискретные и интервальные вариационные ряды распределения.

В дискретном вариационном ряде распределения группы составлены по признаку, изменяющемуся дискретно и принимающему только целые значения.

В интервальном вариационном ряде распределения группировочный признак, составляющий основание группировки, может принимать в определенном интервале любые значения.

Для анализа совокупности вариационный ряд дополняют такими элементами, как накопленная частота, накопленная частость и плотность распределения.

Вариантой называют отдельное значение варьируемого признака, которое он принимает в ряду распределения.

Частота – это численность отдельных вариант или каждой группы вариационного ряда.

Частости – это частоты, выраженные в виде относительных величин: долях единицы или в процентах, рассчитываются как отношение частоты к объему совокупности. Сумма частостей всегда равна единице или 100 %. Замена частот частостями позволяет сопоставлять вариационные ряды с разным числом наблюдений.

Накопленная частота (Sf)показывает число единиц совокупности, у которых значение варианты не больше данной, определяется суммированием частот всех предшествующих интервалов, включая данный:

, , и т.д.

Если вместо частот использовать частости, то аналогично получим накопленные частости(Sw):

, , и т.д.

Плотность распределения – это отношение числа единиц совокупности к ширине интервала.

Абсолютная плотность распределения – это частота, приходящаяся на единицу длины интервала,    
Относительная плотность распределения – частость, приходящаяся на единицу длины интервала,  

Графически ряды распределения можно представить в виде гистограммы, кумуляты, полигона.

Интервальный вариационный ряд изображают в виде гистограммы. Для ее построения в прямоугольной системе координат по оси абсцисс откладывают отрезки, равные длине интервала. Затем на этих отрезках, как на основаниях, строят прямоугольники, высота которых пропорциональна частоте или частости. Для интервального ряда с неравными интервалами по оси ординат откладывают плотность распределения, так как в этом случае

именно она дает представление о заполненности интервала. Площадь всей гистограммы численно равна сумме частот.

Если соединить середины каждого интервала отрезками прямой, то получим замкнутую фигуру в виде многоугольника, которая называется полигоном. Полигон чаще используется для дискретных рядов. Для этого в прямоугольной системе координат строят точки с координатами (x1, f1), (x2, f2), …, (xN, fN), затем последовательно соединяют их отрезками, а из первой и последней точек опускают перпендикуляры на ось х. Полученный многоугольник является полигоном дискретного вариационного ряда.

Кумулята строится по накопленным частотам (или частостям), которые

откладывают по оси у, а по оси х – варианты или верхние границы интервалов.  



Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 1109; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.