КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Общелогические методы и приемы познания
1. Анализ (греч. — разложение) — разделение объекта на составные части с целью их самостоятельного изучения. Применяется как в реальной (практика), так и в мыслительной деятельности. Виды анализа: механическое расчленение; определение динамического состава; выявление форм Обще-частнонаучная методология. Взаимодействие методов ___ взаимодействия элементов целого; нахождение причин явлений; выявление уровней знания и его структуры и т. п. Анализ не должен упускать качество предметов. В каждой области знания есть как бы свой предел членения объекта, за которым мы переходим в иной мир свойств и закономерностей (атом, молекула и т. п.). Разновидностью анализа является также разделение классов (множеств) предметов на подклассы — классификация и периодизация. 2. Синтез (греч. — соединение) — объединение — реальное или мысленное — различных сторон, частей предмета в единое целое. Это должно быть органическое целое (а не агрегат, механическое целое), т. е. единство многообразного. Синтез — это не произвольное, эклектическое соединение «выдернутых» частей, «кусочков» целого, а диалектическое целое с выделением сущности. Для современной науки характерен не только внутри-, но и междисциплинарный синтез, а также синтез науки и других форм общественного сознания.Результатом синтеза является совершенно новое образование, свойства которого не есть только внешнее соединение свойств компонентов, но также и результат их внутренней взаимосвязи и взаимозависимости. Анализ и синтез диалектически взаимосвязаны: но некоторые виды деятельности являются по преимуществу аналитическими (например, аналитическая химия) или синтетическими (например, синергетика). 3. Абстрагирование. Абстракция (лат. — отвлечение) — а) сторона, момент, часть целого, фрагмент действительности, нечто неразвитое, одностороннее, фрагментарное (абстрактное); б) процесс мысленного отвлечения от ряда свойств и отношений изучаемого явления с одновременным выделением интересующих познающего субъекта в данный момент свойств (абстрагирование); в) результат абстрагирующей деятельности мышления (абстракция в узком смысле). Это различного рода «абстрактные предметы», которыми являются как отдельно взятые понятия и категории («белизна», «развитие», «мышление» и т. п.), так Глава VIU и их системы (наиболее развитыми из них являются математика, логика и философия). Выяснение того, какие из рассматриваемых свойств являются существенными, а какие второстепенными, — главный вопрос абстрагирования. Вопрос о том, что в объективной действительности выделяется абстрагирующей работой мышления, а от чего мышление отвлекается, в каждом конкретном случае решается в зависимости прежде всего от природы изучаемого предмета, а также от задач познания. В ходе своего исторического развития наука восходит от одного уровня абстрактности к другому, более высокому. Развитие науки в данном аспекте — это, по выражению Гейзенберга, «развертывание абстрактных структур». Решающий шаг в сферу абстракции был сделан тогда, когда люди освоили счет и тем самым открыли путь, ведущий к математике и математическому естествознанию. Раскрывая механизм развертывания абстрактных структур, Гейзенберг пишет: «Понятия, первоначально полученные путем абстрагирования от конкретного опыта, обретают собственную жизнь. Они оказываются более содержательными и продуктивными, чем можно было ожидать поначалу. В последующем развитии они обнаруживают собственные конструктивные возможности: они способствуют построению новых форм и понятий, позволяют установить связи между ними и могут быть в известных пределах применимы в наших попытках понять мир явлений».1 Вместе с тем Гейзенберг указывал на ограниченность, присущую самой природе абстракции. Дело в том, что она дает некую базисную структуру, «своего рода скелет», который мог бы обрести черты реальности, только если к нему присоединить много иных (а не только существенных) деталей. Существуют различные виды абстракций: а. Абстракция отождествления, в результате которой выделяются общие свойства и отношения изучаемых пред- Гейзенберг В. Шаги за горизонт. С. 243. Обще - частнонаучная методология. Взаимодействие методов ___ метов (от остальных свойств при этом отвлекаются). Здесь образуются соответствующие им классы на основе установления равенства предметов в данных свойствах или отношениях, осуществляется учет тождественного в предметах и происходит абстрагирование от всех различий между ними. б. Изолирующая абстракция — акты «чистого отвлечения», выделяются некоторые свойства и отношения, которые начинают рассматриваться как самостоятельные индивидуальные предметы («абстрактные предметы» — «доброта», «белизна» и т. п.). в. Абстракция актуальной бесконечности в математике — когда бесконечные множества рассматриваются как конечные. Тут исследователь отвлекается от принципиальной невозможности зафиксировать и описать каждый элемент бесконечного множества, принимая такую задачу как решенную. г. Абстракция потенциальной осуществимости — основана на том, что может быть осуществлено любое, но конечное число операций в процессе математической деятельности. Абстракции различаются также по уровням (порядкам). Абстракции от реальных предметов называются абстракциями первого порядка. Абстракциями от абстракций первого уровня называются абстракциями второго порядка и т. д. Самым высоким уровнем абстракции характеризуются философские категории. 4. Идеализация чаще всего рассматривается как специфический вид абстрагирования. Идеализация — это мысленное конструирование понятий об объектах, не существующих и не осуществимых в действительности, но таких, для которых имеются прообразы в реальном мире. В процессе идеализации происходит предельное отвлечение от всех реальных свойств предмета с одновременным введением в содержание образуемых понятий признаков, не реализуемых в действительности. В результате образуется так называемый «идеализированный объект», которым может оперировать теоретическое мышление при отражении реальных объектов. Глава VIII Указывая на важную роль идеализации в научном познании, А. Эйнштейн и Л. Инфельд отмечали, что, например, «закон инерции нельзя вывести непосредственно из эксперимента, его можно вывести лишь умозрительно — мышлением, связанным с наблюдением. Этот идеализированный эксперимент никогда нельзя выполнить в действительности, хотя он ведет к глубокому пониманию действительных экспериментов».' В результате идеализации образуется такая теоретическая модель, в которой характеристики и стороны познаваемого объекта не только отвлечены от фактического эмпирического материала, но и путем мысленного конструирования выступают в более резко и полно выраженном виде, чем в самой действительности. Примерами понятий, являющихся результатом идеализации, являются такие понятия как «точка» — невозможно найти в реальном мире объект, представляющий собой точку, т. е. который не имел бы измерений; «прямая линия», «абсолютно черное тело», «идеальный газ». Идеализированный объект в конечном счете выступает как отражение реальных предметов и процессов. Образовав с помощью идеализации о такого рода объектах теоретические конструкты, можно и в дальнейшем оперировать с ними в рассуждениях как с реально существующей вещью и строить абстрактные схемы реальных процессов, служащие для более глубокого их понимания. Таким образом, идеализированные предметы не являются чистыми фикциями, не имеющими отношения к реальной действительности, а представляют собой результат весьма сложного и опосредованного ее отражения. Идеализированный объект представляет в познании реальные предметы, но не по всем, а лишь по некоторым жестко фиксированным признакам. Он представляет собой упрощенный и схематизированный образ реального предмета. Теоретические утверждения, как правило, непосредственно относятся не к реальным объектам, а к идеализи- Эйнштейн А., Инфельд Л. Эволюция физики. С. 11. Обще-частнонаучная методология. Взаимодействие методов ___ рованным объектам, познавательная деятельность с которыми позволяет устанавливать существенные связи и закономерности, недоступные при изучении реальных объектов, взятых во всем многообразии их эмпирических свойств и отношений. Идеализированные объекты — результат различных мыслительных экспериментов, которые направлены на реализацию некоторого нереализуемого в действительности случая. В развитых научных теориях обычно рассматриваются не отдельные идеализированные объекты и их свойства, а целостные системы идеализированных объектов и их структуры. 5. Обобщение — процесс установления общих свойств и признаков предметов. Тесно связано с абстрагированием. Гносеологической основой обобщения являются категории общего и единичного. Всеобщее (общее) — философская категория, отражающая сходные, повторяющиеся черты и признаки, которые принадлежат нескольким единичным явлениям или всем предметам данного класса. Необходимо различать два вида общего: а) абстрактно-общее как простая одинаковость, внешнее сходство, поверхностное подобие ряда единичных предметов (так называемый «абстрактно-общий признак», например, наличие у всех людей — в отличие от животных — ушной мочки). Данный вид всеобщего, выделенного путем сравнения, играет в познании важную, но ограниченную роль; б) конкретно-общее как закон существования и развития ряда единичных явлений в их взаимодействии в составе целого, как единство в многообразии. Данный вид общего выражает внутреннюю, глубинную, повторяющуюся у группы сходных явлений основу — сущность в ее развитой форме, т. е. закон. Общее неотрывно от единичного (отдельного) как своей противоположности, а их единство — особенное. Единичное (индивидуальное, отдельное) — философская категория, выражающая специфику, своеобразие именно данного явления (или группы явлений одного и того же каче- Глава VIII ства), его отличие от других. Тесно связана с категориями всеобщего (общего) и особенного. В соответствии с двумя видами общего различают два вида научных обобщений: выделение любых признаков (абстрактно-общее) или существенных (конкретно-общее, закон). По другому основанию можно выделить обобщения: а) от отдельных фактов, событий к их выражению в мыслях (индуктивное обобщение); б) от одной мысли к другой, более общей мысли (логическое обобщение). Мысленный переход от более общего к менее общему есть процесс ограничения. Обобщение не может быть беспредельным. Его пределом являются философские категории, которые не имеют родового понятия и потому обобщить их нельзя. 6. Индукция (лат. — наведение) — логический прием исследования, связанный с обобщением результатов наблюдений и экспериментов и движением мысли от единичного к общему. В индукции данные опыта «наводят» на общее, индуцируют его. Поскольку опыт всегда бесконечен и неполон, то индуктивные выводы всегда имеют проблематичный (вероятностный) характер. Индуктивные обобщения обычно рассматривают как опытные истины или эмпирические законы. Выделяют следующие виды индуктивных обобщений: а. Индукция популярная, когда регулярно повторяющиеся свойства, наблюдаемые у некоторых представителей изучаемого множества (класса) и фиксируемые в посылках индуктивного умозаключения, переносятся на всех представителей изучаемого множества (класса) — в том числе и на неисследованные его части. Итак, то, что верно в п наблюдавшихся случаях, верно в следующем или во всех наблюдавшихся случаях, сходных с ними. Однако полученное заключение часто оказывается ложным (например, «все лебеди белы») вследствие поспешного обобщения. Таким образом, этот вид индуктивного обобщения существует до тех пор, пока не встретится случай, противоречащий ему (например, факт наличия черных лебедей). Популярную Обще-частнонаучная методология. Взаимодействие методов ___ индукцию нередко называют индукцией через перечисление случаев. б. Индукция неполная — где делается вывод о том, что всем представителям изучаемого множества принадлежит свойство Р на том основании, что Р принадлежит некоторым представителям этого множества. Например, «некоторые металлы имеют свойство электропроводности», значит, «все металлы электропроводны». в. Индукция полная, в которой делается заключение о том, что всем представителям изучаемого множества принадлежит свойство Р на основании полученной при опытном исследовании информации о том, что каждому представителю изучаемого множества принадлежит свойство Р. Рассматривая полную индукцию, необходимо иметь в виду, что, во-первых, она не дает нового знания и не выходит за пределы того, что содержится в ее посылках. Тем не менее общее заключение, полученное на основе исследования частных случаев, суммирует содержащуюся в них информацию, позволяет обобщить, систематизировать ее. Во-вторых, хотя заключение полной индукции имеет в большинстве случаев достоверный характер, но и здесь иногда допускаются ошибки. Последние связаны главным образом с пропуском какого-либо частного случая (иногда сознательно, преднамеренно — чтобы «доказать» свою правоту), вследствие чего заключение не исчерпывает все случаи и тем самым является необоснованным. г. Индукция научная, в которой, кроме формального обоснования полученного индуктивным путем обобщения, дается дополнительное содержательное обоснование его истинности, — в том числе с помощью дедукции (теорий, законов). Научная индукция дает достоверное заключение благодаря тому, что здесь акцент делается на необходимые, закономерные и причинные связи. д. Индукция математическая — используется в качестве специфического математического доказательства, где органически сочетаются индукция с дедукцией, предположение с доказательством. _____ _____ __ _____ _______________ Глава VIII 7. Индуктивные методы установления причинных связей — индукции каноны (правила индуктивного исследования Бэкона— Милля). а. Метод единственного сходства: если наблюдаемые случаи какого-либо явления имеют общим лишь одно обстоятельство, то, очевидно (вероятно), оно и есть причина данного явления
Дата добавления: 2015-05-22; Просмотров: 592; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |