Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Порядок расчета. Определить приведенное сопротивление теплопередаче панели совмещенной крыши, выполненной из ребристых железобетонных оболочек




Исходные данные

Пример расчета 2

 

Определить приведенное сопротивление теплопередаче панели совмещенной крыши, выполненной из ребристых железобетонных оболочек.

 

 

1. Конструкция панели совмещенной крыши (рисунок М.2) размером 3180х3480х270 мм представляет в сечении трехслойную оболочку. Наружный и внутренний слои толщиной 50 и 60 мм из железобетона с коэффициентом теплопроводности 2,04 Вт/(м·°С). Средний теплоизоляционный слой из пенополистирольных плит с коэффициентом теплопроводности 0,05 Вт/(м·°С). Каждая из оболочек имеет параллельные один другому на расстоянии 700 мм ребра по 60 и 40 мм, доходящие до середины теплоизоляционного слоя. Ребра оболочек взаимно перпендикулярны и, таким образом, каждое ребро одной оболочки примыкает к ребру другой оболочки на площадке 60х40 мм.

 

2. В расчете приняты следующие условия на поверхностях ограждения

 

снаружи - ;

 

внутри -

 

 

Процесс теплопередачи такой ограждающей конструкции трехмерен, так как распределение температур определяется не только потоками теплоты, перпендикулярными плоскости ограждения, но и потоками теплоты в его плоскости. Поле температур симметрично относительно координатных плоскостей, поэтому для расчета возможно вырезать исследуемую область конструкции плоскостями, параллельными координатным (на рисунке М.2, а помечено буквами ). На рисунке М.2, б представлено аксонометрическое изображение этой части конструкции. Условия теплообмена: на плоскостях тепловые потоки, перпендикулярные осям координат , равны нулю; на плоскостях возможно задать граничные условия второго рода:

 

- для плоскости ;

 

- для плоскости

 

Согласно принятой методике расчета трехмерного температурного поля исследуемая область расчленяется на 3528 элементарных параллелепипедов. Расчет выполняется на ПК. В результате расчета получаем осредненный тепловой поток =3,215 Вт. Площадь рассчитанного фрагмента

 

Приведенное сопротивление теплопередаче рассчитанного участка и всей панели определяется по формуле (M.1)

 

 

ПРИЛОЖЕНИЕ Н

(рекомендуемое)

 

ПРИМЕРЫ РАСЧЕТА КОЭФФИЦИЕНТА ТЕПЛОТЕХНИЧЕСКОЙ ОДНОРОДНОСТИ ОГРАЖДАЮЩИХ КОНСТРУКЦИЙ ПО ТАБЛИЧНЫМ ЗНАЧЕНИЯМ

 

 

 

 

 

 

Рисунок H.1 - Схемы теплопроводных включений в ограждающих конструкциях

 

 

H.1 РАСЧЕТ КОЭФФИЦИЕНТА ТЕПЛОТЕХНИЧЕСКОЙ ОДНОРОДНОСТИ ПО ФОРМУЛЕ (12)




Поделиться с друзьями:


Дата добавления: 2015-05-08; Просмотров: 436; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.