Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Объемные насосы, принцип их действия




У объемных насосов движение рабочего органа может быть возвратно-поступательным или вращательным, поэтому их разделяют на две группы: к первой группе относятся поршневые, плунжерные и диафрагменные насосы; ко второй — шестеренные, винтовые и др.

Поршневой насос одностороннего действия состоит из корпуса, внутри которого расположены рабочая камера с всасывающим и напорным клапанами и цилиндр с поршнем, совершающим возвратно-поступательное движение. К корпусу присоединены всасывающий н напорный трубопроводы. Вращательное движение вала приводного двигателя преобразуется в возвратно-поступательное движение поршня с помощью кривошипно-шатунного механизма.

При ходе поршня вправо в цилиндр засасывается объем жидкости V = FS (где F — площадь поршня; 5 — ход поршня). При ходе поршня влеро этот же объем вытесняется в напорный трубопровод. Таким образом, насос одностороннего действия за один оборот кривошипа совершает один цикл всасывания и один цикл нагнетания (рабочий).

Действительная подача Q меньше теоретической вследствие запаздывания закрывания напорного и всасывающего клапанов, утечек через клапаны, сальниковые и поршневые уплотнения, а также за счет выделения воздуха или газов из перекачиваемой жидкости.

Теоретически поршневой насос может развивать любой напор. Однако практически напор ограничивается в зависимости от прочности отдельных деталей, а также от мощности двигателя, приводящего насос в действие.

Объем жидкости V поршневой насос одностороннего действия подает за один рабочий ход поршня. Мгновенный расход жидкости подаваемой насосом, равен площади поршня F, умноженной на скорость его движения v. Поскольку возвратно-поступательное движение поршня осуществляется с помощью кривошипно-шатунного механизма, скорость поршня изменяется от нуля в мертвых положениях кривошипа до максимума в среднем положении. Аналогичным образом меняется во время рабочего хода поршня и подача насоса. Эти обстоятельства определяют основной недостаток поршневых насосов одностороннего действия — прерывистую и неравномерную подачу

Изменение подачи поршневого насоса за один оборот кривошипа можно изобразить графически. Подобные графики дают возможность наглядно ^представить последовательность процессов нагнетания и всасывания, а также оценить степень неравномерности подачи, т. е. установить, во сколько раз максимальная подача превосходит среднюю.

Заменим площадь, ограниченную синусоидой и осью абсцисс графика, площадью равновеликого прямоугольника, построенного на отрезке прямой длиной 2лх. Обе эти площади графически выражают объем жидкости, подаваемой насосом в напорный трубопровод за один оборот кривошипа. Высота h прямоугольника, таким образом, будет представлять в принятом масштабе среднюю подачу, а наибольшая высота синусоиды — максимальную подачу.

Существует несколько способов уменьшения неравномерности движения жидкости в системе, соединенной с поршневым насосом. Одним из них является применение поршневых насосов двустороннего действия, у которых камеры с клапанами располагаются по обе стороны цилиндра и поэтому движение поршня в любую сторону является рабочим: циклу всасывания в левой камере соответствует цикл нагнетания в правой, и наоборот.

Другим весьма эффективным способом является использование многопоршневых насосов с параллельным включением цилиндров, поршни которых приводятся в движение от общего коленчатого вала. Рассмотрим, например, диаграмму подачи трехпоршневого насоса, состоящего из трех насосов одностороннего действия, кривошипы которых расположены по отношению друг к другу под углом 120°.

Для обеспечения возможно более равномерной подачи поршневых насосов и уменьшения инерции масс жидкости, заполняющей систему, практикуется также устройство воздушных колпаков. Вследствие большой упругости воздуха, находящегося в колпаке, во время цикла нагнетания происходит его сжатие и поглощение части объема жидкости, прерывающего среднюю за рабочий цикл подачу. Во время цикла всасывания воздух расширяется, и процесс вытеснения жидкости в напорный трубопровод продолжается.

Плунжерные насосы отличаются от поршневых конструкцией рабочего органа. Вместо поршня они имеют плунжер, представляющий собой полый цилиндр, движущийся в уплотняющем сальнике не касаясь внутренних стенок рабочей камеры. По гидравлическим параметрам поршневые и плунжерные насосы одинаковы. В эксплуатации плунжерные насосы несколько проще, так как у них меньше изнашиваемых деталей (отсутствуют поршневые кольца, манжеты и пр.).

Диафрагменные насосы имеют вместо поршня гибкую диафрагму (мембрану) из кожи, прорезиненной ткани или из синтетического материала.

Подача серийно выпускаемых поршневых насосов меняется от 1 до 150 м3/ч при напорах до 2000 м.

Шестеренный насос. Рабочим органом насоса являются две шестерни: ведущая и ведомая, размещенные в корпусе с небольшими радиальными и торцовыми зазорами. При вращении колес в направлении, указанном стрелками, жидкость поступает из полости всасывания во впадины между зубьями и перемещается в напорную полость.

Объемный КПД шестеренного насоса учитывает частичный перенос жидкости обратно в полость всасывания, а также протечки жидкости через зазоры. В среднем он составляет 0,7—0,9.

Шестеренные насосы обладают реверсивностью, т. е. при изменении направления вращения шестерен они изменяют направление потока в трубопроводах, присоединенных к насосу.

Винтовые насосы имеют винты специального профиля, линия зацепления между которыми обеспечивает полную герметизацию области нагнетания от области всасывания.

Величины характеризующие рабочий процесс ОГМ.

Основной величиной, определяющей размер объемного насоса (объемного гидродвигателя) является его рабочий объем. Рабочий объем насоса, и частота его рабочих циклов определяют идеальную подачу. Идеальной подачей объемного насоса называют подачу в единицу времени несжимаемой жидкости при отсутствии утечек через зазоры. Осредненная по времени идеальная подача

где — рабочий объем насоса, т. е. идеальная подача насоса за один цикл (один оборот вала насоса); n — частота рабочих циклов насоса (для вращательных насосов частота вращения вала); Vk — идеальная подача из каждой рабочей камеры за один цикл; z — число рабочих камер в насосе; k — кратность действия насоса, т. е. число подач из каждой камеры за один рабочий цикл (один оборот вала).

Чаще всего k=1, но в некоторых конструкциях k=2 и более.

Действительная подача насоса меньше идеальной вследствие утечек через зазоры из рабочих камер и полости нагнетания, а при больших давлениях насоса еще и за счет сжимаемости жидкости.

Отношение действительной подачи Q к идеальной называется коэффициентом подачи:

где qу — расход утечек; qсж — расход сжатия.

Полное приращение энергии жидкости в объемном насосе обычно относят к единице объема и, следовательно, выражают в единицах давления. Так как объемные насосы предназначены в основном для создания значительных приращений давления, то приращением кинетической энергии в насосе обычно пренебрегают. Поэтому давление насоса представляет собой разность между давлением на выходе из насоса и давлением на входе в него:

Напор. В гидравлике — это высота, на которую способна подняться жидкость под действием статического давления, разности высот и внешней кинетической энергии жидкости. Он определяется через удельную (отнесенную к единице веса) энергию жидкости, проходящей через насос, и выражается в метрах (Дж.м).

Напор H насоса состоит из статического Hст и динамического Hд напоров:

H = Hст + Hд

Статический напор: Hст= (ρн - ρв)/ρg + (zн - zв)

Динамический напор: Hд = (vн2 - vв2)/2g

Для насосов объемного типа в качестве основного параметра обычно указывают не напор H, а создаваемое ими полное давление р. Между давлением и напором существует зависимость p = ρgH.

Полезная мощность насоса

Потери энергии в насосе характеризуются его к. п. д. η, представляющим собой отношение:

η = Nп/N.

Коэффициент полезного действия насоса можно представить в виде произведения трех к. п. д. — гидравлического, объемного и механического, т. е.

η = ηгом.

Гидравлический к. п. д. — это отношение полезной мощности насоса к сумме полезной мощности и мощности, затраченной на преодоление гидравлических сопротивлений в насосе, т. е. он характеризует гидравлические потери в насосе.

Объемный к. п. д. характеризует объемные потери, обусловленные утечками жидкости внутри насоса.

Механический к.п.д. характеризует потери, затрачиваемые на преодоление механического трения в нососе.

Частота вращения. В качестве данного параметра принимается частота вращения n вала насоса в минуту (об/мин). Назначение или выбор частоты вращения зависит от ряда условий, таких, как тип насоса и его двигателя, ограничения по массе и габаритным размерам, требования в отношении экономичности и др.

 

Насос - гидравлическая машина, в которой механическая энергия, приложенная к выходному валу, преобразуется в гидравлическую энергию потока рабочей жидкости.

Гидродвигатель - машина, в которой энергия потока рабочей жидкости преобразуется в энергию движения выходного звена. Если выходное звено получает вращательное движение, то такой гидродвигатель называют гидромотором, если поступательное, то силовым цилиндром.

Гидромашина, которая может работать в режиме насоса или гидромотора, называется обратимой.

Шестеренные машины в современной технике нашли широкое применение. Их основным преимуществом является конструкционная простота, компактность, надежность в работе и сравнительно высокий КПД. В этих машинах отсутствуют рабочие органы, подверженные действию центробежной силы, что позволяет эксплуатировать их при частоте вращения до 20 с-1. В машиностроении шестеренные гидромашины применятся в системах с дроссельным регулированием.

Шестеренные насосы. Основная группа шестеренных насосов состоит из двух прямозубых шестерен внешнего зацепления. Применяются также и другие конструктивные схемы, например, насосы с внутренним зацеплением, трех- и более шестерные насосы.

Шестеренные машины являются обратимыми, т.е. могут быть использованы и как гидромоторы и как насосы.

Пластинчатые насосы и гидромоторы так же, как и шестеренные, просты по конструкции, компактны, надежны в эксплуатации и сравнительно долговечны. В таких машинах рабочие камеры образованы поверхностями статора, ротора, торцевых распределительных дисков и двумя соседними вытеснителями-платинами. Эти пластины также называют лопастями, лопатками, шиберами.

Пластинчатые насосы могут быть одно-, двух- и многократного действия. В насосах однократного действия одному обороту вала соответствует одно всасывание и одно нагнетание, в насосах двукратного действия - два всасывания и два нагнетания.

При вращении ротора пластины под действие м центробежной силы, пружин или под давлением жидкости, подводимой под их торцы, выдвигаются из пазов и прижимаются к внутренней поверхности статора. Благодаря эксцентриситету объем рабочих камер вначале увеличивается - происходит всасывание, а затем уменьшается - происходит нагнетание. Жидкость из линии всасывания через окна распределительных дисков вначале поступает в рабочие камеры, а затем через другие окна вытесняется из них в напорную линию.

При изменении эксцентриситета е изменяется подача насоса. Если е = 0 (ротор и статор расположены соосно), платины не будут совершать возвратно-поступательных движений, объем рабочих камер не будет изменяться, и, следовательно, подача насоса будет равна нулю.

Радиально-поршневые гидромашины применяют при сравнительно высоких давлениях (10 МПа и выше). По принципу действия радиально-поршневые гидромашины делятся на одно-, двух- и многократного действия. В машинах однократного действия за один оборот ротора поршни совершают одно возвратно-поступательное движение.

Ротор вращается от приводного вала через муфту. При вращении ротора в поршни вначале выдвигаются из цилиндров (происходит всасывание), а затем вдвигаются (нагнетание). Соответственно рабочая жидкость вначале заполняет цилиндры, а затем поршнями вытесняется оттуда в канал и далее в напорную линию гидросистемы. Поршни выдвигаются и прижимаются к статору центробежной силой или принудительно (пружиной, давлением рабочей жидкости или иным путем).

Для радиально-поршневых машин работающих в режиме гидромотора крутящий момент можно определить по формуле

 

Аксиально-поршневые гидромашины нашли широкое применение в гидроприводах, что объясняется рядом их преимуществ: меньшие радиальные размеры, масса, габарит и момент инерции вращающихся масс; возможность работы при большом числе оборотов; удобство монтажа и ремонта.

Во время работы насоса при вращении вала приходит во вращение и блок цилиндров. При наклонном расположении упорного диска или блока цилиндров поршни, кроме вращательного, совершают и возвратно-поступательные аксиальные движения (вдоль оси вращения блока цилиндров). Когда поршни выдвигаются из цилиндров, происходит всасывание, а когда вдвигаются - нагнетание. Через окна в распределительном устройстве цилиндры попеременно соединяются то с всасывающей, то с напорной гидролиниями. Для исключения соединения всасывающей линии с напорной блок цилиндров плотно прижат к распределительному устройству, а между окнами этого устройства есть уплотнительные перемычки. Для уменьшения гидравлического удара при переходе цилиндрами уплотнительных перемычек в последних сделаны дроссельные канавки в виде небольших усиков, за счет которых давление жидкости в цилиндрах повышается равномерно.

Рабочими камерами аксиально-поршневых насосов являются цилиндры, аксиально расположенные относительно оси ротора, а вытеснителями - поршни.

Крутящий момент аксиально-поршневого гидромотора определяют по формуле:




Поделиться с друзьями:


Дата добавления: 2015-05-23; Просмотров: 1186; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.034 сек.