КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Хвильові рівняння електромагнітних хвиль
Для одержання хвильових рівнянь електромагнітних хвиль, розв’язком яких є рівняння (6), скористаємось рівняннями Максвелла.
Рис. 4
Розглянемо замкнутий контур в системі координат Еz,o,x, сторони якого відповідно дорівнюють і Δх. Запишемо для цього замкнутого контуру рівняння Максвелла (1)
(7)
Оскільки ліві сторони рівнянь (7) відповідають рівнянню Максвелла (1), то праві сторони цих рівнянь можна прирівняти. Після незначних спрощень одержуємо
. (8)
В граничному випадку, коли рівняння (8) набуде вигляду
де – , зв’язок індукції магнітного поля з напруженістю цього поля. З урахуванням цього зауваження формула (8) набуде вигляду
(6.9)
Рівняння Максвелла (3) використаємо до замкнутого контуру в координатній площині Нy,o,x (рис.4), вважаючи що вільні електричні заряди відсутні, а тому струм провідності jdS = 0
(10)
Оскільки ліві сторони рівнянь (10) однакові, то й праві сторони однакові. Прирівняємо праві сторони цих рівнянь, одержимо
В граничному випадку, коли , одержимо
(11)
Оскільки , то рівняння (11) набуде вигляду
. (12)
Продиференціюємо рівняння (12) по координаті х, одержимо
(13)
Замість виразу в душках правої сторони рівняння (13) підставимо його значення з рівняння (9), одержимо
. (14)
Продиференціюємо по координаті х рівняння (9)
(15)
Похідну в душках правої сторони рівняння (15) замінимо на відповідну похідну з рівняння (12), одержимо (16)
З рівнянь (14) і (16) шляхом незначних перетворень одержуємо хвильові рівняння електромагнітних хвиль
(17)
Аналогічні до (17) хвильові рівняння можна одержати, якщо кожне з рівнянь (6) двічі диференціювати за часом і координатою і виключити з них функцію косинуса, тобто
Звідки, врахувавши що , одержуємо
(18)
Аналогічно диференціюємо друге рівняння (6) й після незначних спрощень одержуємо
(19) Співставлення рівнянь (18) і (19) з рівняннями (17) дає можливість визначити швидкість поширення електромагнітних хвиль
(20)
Якщо врахувати, що для вакууму ε =1 і μ = 1, то швидкість поширення електромагнітних хвиль у вакуумі буде дорівнювати
(21)
Одержане значення швидкості поширення електромагнітних хвиль у вакуумі добре збігається з швидкістю поширення світла. В діелектричному середовищі (крім феромагнетиків) швидкість поширення електромагнітних хвиль менша на , тобто
(22) Для світлових хвиль, які можуть поширюватись в прозорих діелектричних середовищах, величину називають показником заломлення і позначають через n, тому
(23)
Дата добавления: 2015-05-23; Просмотров: 373; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |