Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Проте слід пам'ятати, що, незважаючи на свої великі потенційні можливості, «працює» жива речовина лише в межах біосфери 2 страница




Продукти життєдіяльності й відмерлі тіла як продуцентів, так і консументів стають джерелом енергії для редуцентів — бактерій і грибів, що розкладають (мінералізують) цю органічну речовину й одержують від 0,01 до 10 % запасеної енергії Сонця залежно від того, до якого трофічного рівня належав об'єкт живлення. Через такі великі втрати енергії під час переходу її з одного трофічного рівня на наступний ланцюги живлення не можуть бути довгими й зазвичай налічують не більше ніж п'ять ланок: ланку продуцентів, одну-три ланки консументів, ланку редуцентів.

Кругообіг речовин у біосфері.

Існування життя на Землі залежить не лише від потоку енергії, а й від кругообігу речовин у біосфері. Будь-які живі організми дістають із довкілля хімічні елементи, котрі потім використовують на побудову чи підтримання своїх тіл і на забезпечення процесів розмноження. Всього відомо близько 80 елементів, необхідних біоті. З продуктами життєдіяльності або після смерті ці елементи знову потрапляють у довкілля — атмосферу, гідросферу чи літосферу, й у подальшому використовуються іншими організмами. Отже, в біосфері постійно відбувається кругообіг речовин. Прямо чи опосередковано цей кругообіг здійснюється за рахунок сонячної енергії та сил гравітації.

Хімічні елементи, які використовуються живою речовиною у великих кількостях і зазвичай становлять не менш як 0,1 % загальної маси організму, називають макроелементами. До макроелементів належать вуглець, кисень, водень, азот, фосфор, сірка, калій, магній і кальцій. Усі ці елементи, за винятком кисню й водню, називають також біогенними елементами, оскільки жива речовина вибірково й у значній кількості поглинає їх із неживого середовища й концентрує в клітинах. Елементи, необхідні організмам у менших кількостях (до 0,1 %), належать до мікроелементів. Це мідь, цинк, молібден, бор, йод, силіцій та ін.

Макро- й мікроелементи використовуються живими істотами в складі певних молекул. Елемент, що входить до складу молекули, з якої він може бути засвоєний організмом, називають доступним, або елементом у доступній формі. Часто для різних груп організмів доступні форми одного й того самого елемента різні.

Кругообіги кисню й водню.

Кисень і водень входять до складу всіх органічних сполук. Вони поглинаються продуцентами в складі води й вуглекислого газу в процесі фотосинтезу, всіма іншими організмами — з органічною речовиною, створеною продуцентами, під час дихання (з атмосфери чи з водного розчину) й уживання питної води. Як кінцеві продукти біологічного кругообігу, водень і частина кисню повертаються в неживе середовище також у вигляді води, а кисень, окрім того, виділяється в молекулярній формі в атмосферу рослинами-продуцентами як один із кінцевих продуктів фотосинтезу.

Кругообіг вуглецю.

Вуглець — це основа органічних речовин. Він входить до складу білків, жирів, вуглеводів, нуклеїнових кислот та інших речовин, необхідних для існування живої речовини. До первинних джерел вуглецю в біосфері належать атмосферний вуглекислий газ, що становить 0,036 % загального об'єму тропосфери, й вуглекислий газ, розчинений у воді Світового океану, де його кількість у 50 разів вища, ніж в атмосфері.

Неорганічний вуглець доступний лише для продуцентів — рослин і невеликої групи хемотрофних бактерій. Унаслідок процесів фото- й хемосинтезу вуглець зв'язується в молекули цукрів, які потому використовуються для створення інших органічних сполук. У такому вигляді вуглець стає доступним для консументів і редуцентів. У результаті процесів дихання й бродіння органічні речовини в клітинах окиснюються з виділенням енергії й вуглекислого газу, який знову або потрапляє в атмосферу, або розчиняється у воді, а також утворює йони карбонатів. Органічна речовина загиблих особин також розпадається з утворенням вуглекислого газу. Цей процес здійснюється редуцентами. Якщо з якихось причин відмерлі рештки не були використані редуцентами, вони нагромаджуються в літосфері і з часом трансформуються у вуглецевмісні копалини — торф, вугілля, нафту.

Кругообіг азоту (рис. 2. 2.). Атмосферний азот, що перебуває в молекулярній формі, доступний тільки для нечисленної групи азотфіксувальних бактерій і синьозелених водоростей. Азотфіксатори, засвоюючи молекулярний азот, залучають його до складу органічної речовини свого тіла, тобто переводять в органічну форму. Після відмирання органічний азот трансформується в мінеральну форму (амоній, нітрати або нітрити) амоніфікуючими й нітрифікуючими бактеріями. Мінеральний азот доступний лише для рослин, які засвоюють його й переводять в органічну форму (зокрема в білки й нуклеїнові кислоти), і в такому вигляді азот стає доступним для консументів — тварин і грибів. Після їх відмирання азот знову використовується бактеріями амоніфікаторами й нітрифікаторами. Мінеральний азот використовують також бактерії денітрифікатори, які, врешті-решт, переводять його в молекулярну форму й повертають в атмосферу. Цикл замикається.

 

Кругообіг фосфору.

На відміну від азоту, джерелом фосфору є не атмосфера, а земна кора. В процесі вивітрювання гірських порід фосфор переходить у ґрунтовий розчин і стає доступним для рослин. Він входить передусім до складу нуклеїнових кислот, аденозинтрифосфорної кислоти (АТФ), фосфоліпідів. Із цими органічними речовинами фосфор передається ланцюгами живлення від продуцентів до консументів і повертається в ґрунт у вигляді органічних решток і продуктів життєдіяльності. В результаті процесів мінералізації, які здійснюються бактеріями-редуцентами, фосфор знову переходить у неорганічні форми й стає доступним для рослин.

Проте в природі найчастіше саме нестача фосфору стримує розвиток біоти. З одного боку, фосфорні сполуки швидко вимиваються в Світовий океан. Цьому сприяють процеси ерозії ґрунту. Багато фосфору виноситься в океан і з неочищеними стічними водами. В океані цей фосфор частково використовується мікро- й макроскопічними водоростями, а потім споживається морськими консументами та редуцентами. Деяка частина фосфору може перевідкладатися на суші. Наприклад, послід морських рибоїдних птахів, який містить багато фосфору, нагромаджується в пташиних колоніях і на пташиних базарах, утворюючи так зване гуано — корисну копалину, що інтенсивно добувається в деяких країнах і використовується для виробництва фосфатних мінеральних добрив (наприклад, у Чилі). Але більша частина фосфору нагромаджується на дні з відмерлими рештками морської біоти. Цей фосфор може знову стати доступним для біоти тільки з часом у геологічному вимірі, наприклад після підняття певних ділянок морського дна (щоправда, сьогодні людина вже почала розробляти й морські родовища фосфоритів). З іншого боку, на суші значна частина мінерального фосфору утворює нерозчинні комплекси з ґрунтовими частинками й стає недоступною для продуцентів, отже, й для інших ланок трофічних ланцюгів. Лише деякі ґрунтові гриби здатні вилучати фосфорні сполуки з цих комплексів.

Кругообіг сірки.

Сірка — це необхідний компонент багатьох органічних речовин, серед яких передусім слід зазначити амінокислоту цистеїн.

Головним джерелом сірки є розчинені у воді продукти вивітрювання гірських порід (найчастіше сульфіди заліза — основний компонент колчеданів) або сірководень і сірчистий газ, які виділяються в атмосферу вулканами, гейзерами, гарячими джерелами. Сірководень, окиснений атмосферним киснем до сірчистого газу, розчиняється у водяній парі атмосфери й випадає з дощем на поверхню планети. До складу живої речовини сірка потрапляє шляхом поглинання розчинених у воді йонів сульфатів рослинами-продуцентами. Потім сірка в складі рослинних білків ланцюгами живлення потрапляє до консументів і редуцентів. У анаеробних умовах (наприклад, у болотах) редуценти розкладають білки з виділенням сірки у вигляді сірководню, який може бути окиснений до молекулярної сірки або до розчинних сульфатів і сульфідів. У такій формі сірка знову стає доступною для продуцентів.

Сьогодні кругообіг сірки під впливом людини зазнає суттєвих змін: майже третина сірки, що циркулює в біосфері, потрапляє в атмосферу з димогазовими викидами заводів, фабрик і теплових електростанцій. Ця «зайва» сірка, розчиняючись в атмосфері з утворенням сірчаної й сірчистої кислот, випадає у вигляді кислотних дощів, які призводять до швидкої деградації багатьох екосистем.

Кругообіги калію, магнію та кальцію.

Ці елементи у вигляді йонів потрапляють у живу речовину в процесі поглинання води рослинами, а також під час уживання питної води. Вони виконують різноманітні функції. Наприклад, калій необхідний для роботи калій-натрієвого насоса клітин, магній — обов'язкова складова хлорофілу, кальцій потрібний для підтримання постійного рН цитоплазми, є головним компонентом панцирів, будиночків, скелетів багатьох тварин. Подібно до азоту, фосфору й сірки, ці елементи мігрують трофічними ланцюгами від продуцентів через консументи до редуцентів. Після загибелі організму вони швидко переходять у водні розчини й знову стають придатними для подальшого використання.

У морях кальцій і магній частково вилучаються з біологічного кругообігу й консервуються в осадових породах. Наприклад, мікроскопічні морські водорості кокколітофориди перевідкладають кальцій у вигляді карбонатів на поверхні клітин, утворюючи так звані кокколіти. Після відмирання клітин кокколіти не встигають цілком розчинитись у воді й осідають на дно, формуючи крейдяні осадові породи. Лише в геологічному вимірі часу, після підняття певних ділянок дна, кальцій, нагромаджений у крейді, вивільнюється в процесі вивітрювання й знову стає доступним для біоти.

Ш Великий кругообіг речовин і вплив на нього антропогенного фактора. Енергія Сонця й сили гравітації рухають два кругообіги речовин: біологічний та геологічний (рис. 2. 3.). Біологічний кругообіг швидкий і розімкнений: початкова й кінцева ланки замикаються через доступні неорганічні речовини. Геологічний кругообіг повільний і замкнений. Частина речовин із біологічного кругообігу надходить у геологічний у вигляді відмерлих решток, утворюючи осадові породи, які з часом під впливом тиску, температури та інших факторів трансформуються в граніти. Тектонічні підняття спричинюють винесення частини гранітних порід на поверхню. Граніти вивітрюються, й, як наслідок, утворюється фонд доступних речовин, що в подальшому знову залучаються до біологічного кругообігу.

 

Процеси кругообігу речовин у біосфері здійснюються збалансовано. Переважна більшість речовин, залучених до біологічного кругообігу, повертається в мінеральний стан і стає доступною для повторного використання живою речовиною. Лише невелика частина відкладається в осадових породах, але ці втрати компенсуються речовинами, які вивільнюються з гірських порід у результаті процесів вивітрювання.

Баланс та узгодженість біологічного й геологічного циклів досягаються завдяки живій речовині: за рахунок тривалих процесів видоутворення в разі появи нових ресурсів чи нових умов середовища й за рахунок формування численних прямих, зворотних і непрямих зв'язків між різними організмами та факторами середовища.

Зазвичай прискорення вивітрювання гірських порід спричиняє зростання кількості біогенних речовин, що, своєю чергою, стимулює збільшення кількості живої речовини й урешті-решт підвищує інтенсивність процесів винесення речовин у Світовий океан. Це призводить до інтенсивнішого нагромадження донних осадів. Кількість доступних речовин у біосфері починає швидко зменшуватися. Біосфера переходить на «голодний» режим, що супроводжується масовими вимираннями видів, посиленням конкурентної боротьби за ресурси й прискоренням процесів утворення нових, більш конкурентоспроможних та «економних» видів. Проте вимирання відбувається набагато швидше, ніж видоутворення. За приклад можуть правити кам'яновугільний і крейдовий періоди, коли надзвичайно швидко нагромаджувались осадові породи внаслідок катастрофічного вимирання багатьох видів палеозойської та ранньомезозойської флори й фауни. Вимирання завершувалося появою на планеті нових класів і типів (відділів) тварин і рослин. Іще тривають дискусії про причини порушення балансу між біологічним і геологічним крутообігами, однак катастрофічні наслідки цього й повільні темпи їх усунення очевидні.

Сьогодні ситуація аналогічна, але, на відміну від попередніх епох, причина її відома: це діяльність людини — так званий антропогенний фактор (рис. 2. 4.).

 

Розглянемо головні причини порушення кругообігу речовин у біосфері.

По-перше, це досить сильне штучне прискорення процесів вивітрювання осадових і гранітних порід, пов'язане з видобуванням і переробкою корисних копалин, спалюванням вугілля, нафти, торфу, природного газу. В результаті в атмосфері збільшується вміст вуглекислого газу, оксидів сірки, через кислотні дощі зменшується рН ґрунту, що призводить до переходу багатьох елементів у розчинений стан. Деякі з них у великих концентраціях токсичні й небезпечні для живого (наприклад, важкі метали — мідь, цинк, свинець). Процеси кругообігу речовин у біологічному циклі вповільнюються — адже гинуть носії живої речовини. Та чим більше елементів переходить у розчин, тим більше їх вимивається у Світовий океан. Прискорені темпи загибелі біоти, вповільнені темпи повторного використання доступних мінеральних речовин, зростання швидкості їх вимивання спричиняють перезбагачення Світового океану біогенними елементами. Внаслідок цього частішають спалахи «цвітіння» океану мікроскопічними водоростями, які нерідко бувають токсичними й пригнічують розвиток консументів, котрі їх споживають. Так, порівняно з минулими століттями частота спалахів «цвітіння» в Світовому океані зросла в 50—130 разів! Усе це прискорює процеси вилучення з біосфери доступних біогенних речовин їх консервації в донних відкладах.

По-друге, людина в процесі своєї господарської діяльності створює численні речовини (наприклад, пластмаси), які надалі не можуть бути ні використані продуцентами, ні розкладені до доступних мінеральних речовин редуцентами. Вони утворюють особливу групу антропогенних «осадових» порід — відходи нашої цивілізації, які археологи чомусь назвали «культурним шаром». Ці відходи зрештою будуть трансформовані в літосфері в граніти й потім у процесі вивітрювання знову стануть доступними для живої речовини, але відбудеться це в геологічних вимірах часу — через мільйони років. Тому є реальна загроза того, що доступні ресурси біосфери можуть бути перероблені на відходи швидше, ніж завершиться цикл геологічного кругообігу. Що в цьому разі станеться з біосферою (в тому числі й з людиною), передбачити нескладно.

2.4. Біогеоценози — елементарні одиниці біосфери.

 

...Ми, біологи, добре знаємо, що найстійкіше біологічне угруповання — це угруповання, яке складається з максимуму різноманітних видів. Наприклад, це тропічний ліс, який складається з багатьох десятків тисяч видів. А найнестійкіше угруповання — тундра: тут мало видів і звідси її страшенна вразливість, ранимість. Стійкою є лука, що складається з багатьох видів. А тільки-но ми застосовуємо монокультуру, то її вже треба постійно підживлювати добривами, захищати отрутохімікатами.., інакше вона існувати не може. Вона нестійка, бо «моно». (М. М. Воронцов, російський біолог).

Загальне уявлення про екосистему.

Процеси зв'язування сонячної енергії, її трансформації й накопичення в живій речовині, поглинання поживних речовин та їх перетворення, нагромадження осадових відкладів і вивітрювання гірських порід відбуваються в конкретних екосистемах. Термін «екосистема» запропонував англійський еколог А. Тенслі в 1935 р. Під екосистемою розуміють функціональну систему, яка вбирає в себе угруповання живих організмів разом із середовищем, в якому вони мешкають. Елементи цієї системи пов'язані між собою обміном речовин та енергії. Екосистемами є й біосфера в цілому, й окремий ліс, і окрема калюжа, й поодиноке дерево, тобто як за розмірами, так і за складом екосистеми дуже різноманітні. Головна спільна риса всіх екосистем — це те, що в певних ланках трофічного ланцюга екосистеми засвоюється, передається й перетворюється енергія. В екосистемах також відбуваються міграція й трансформація речовини. Залежно від характеру циркуляції речовини екосистеми поділяються на закриті й відкриті.

Закритою називають таку екосистему, в якій речовина циркулює від продуцентів до редуцентів по колу й саме в межах цієї екосистеми. Наприклад, у ставку біогенні елементи багаторазово проходять по тому самому колу: водорості—зоопланктон—риба—бактерії—мінеральні біогенні речовини—знову водорості.

У відкритих екосистемах речовина по колу не обертається. Наприклад, в екосистемі окремого дерева гусінь з'їдає листя продуцента; саму ж гусінь ловлять птахи й відносять у свої гнізда на інші дерева. Отже, речовина з даної екосистеми вилучається й переноситься в іншу.

Розрізняють також екосистеми, здатні або не здатні до саморегуляції. Механізм саморегуляції в екосистемах першого типу здійснюється за принципом негативного зворотного зв'язку. Цей принцип у спрощеному варіанті можна уявити собі у вигляді ланцюга, кожна ланка якого виступає щодо двох сусідніх або хижаком, або жертвою. Якщо з якихось причин зменшується чисельність жертви, то через нестачу їжі з часом зменшується й чисельність хижака. Зниження чисельності хижака відповідно приводить до зменшення тиску на жертву, чисельність якої збільшується. Це знову створює умови для збільшення чисельності хижака. Отже, система «хижак—жертва» саморегулюється, тобто утримується в рівноважному стані. При цьому чисельність жертви й хижака постійно коливається навколо якогось середнього значення. Ці коливання дістали назву «хвиль життя».

Біогеоценоз як елементарна екосистема біосфери. Елементарними екосистемами, з яких складається біосфера, є біогеоценози — замкнені екосистеми, здатні до саморегуляції.

Біогеоценозом називають однорідну ділянку земної поверхні з певним складом організмів, що населяють її (бактерій, рослин, тварин, грибів), і комплексом абіотичних компонентів (ґрунтом, повітрям, сонячною енергією та іншими), які пов'язуються обміном речовини й енергії в єдину природну систему. Складові біогеоценозу — це біотоп — однорідний за абіотичними факторами середовища простір — і біоценоз — сукупність усіх представлених у межах даного біотопу організмів. Функціональні складові біоценозу: сукупність усіх продуцентів даного біотопу (вищі рослини, водорості, автотрофні бактерії) — так званий фітоценоз; сукупність тварин-консументів — зооценоз; сукупність редуцентів (бактерій і грибів-сапротрофів) — мікробоценоз. Межі біогеоценозу визначаються межами фітоценозу, тобто контуру однорідної рослинності, оскільки саме рослини-продуценти є першою ланкою трофічних ланцюгів біогеоценозу. Біогеоценози водойм називають також біогідроценозами.

Розміри конкретних біогеоценозів коливаються в досить широких межах:

– у пустелях площа біогеоценозу становить сотні тисяч квадратних метрів (наприклад, такири й барханні піски площа одного лісового біогеоценозу — зазвичай від кількох сотень до кількох десятків тисяч квадратних метрів (наприклад, березовий гай у дубовому лісі);

– лугові й степові біогеоценози ще менші — до кількох десятків, зрідка — сотень квадратних метрів.

Як правило, виразних, різких меж між біогеоценозами не існує, а один поступово переходить в інший. Будь-який біогеоценоз являє собою систему елементів, що взаємодіють, — популяцій живих організмів.

Кожний біогеоценоз характеризується біомасою та продуктивністю, має свою певну просторову й видову структури, певну сукупність ланцюгів живлення, які пов'язуються потоками речовини й енергії в специфічну для даного біогеоценозу трофічну мережу й визначають його інформативність.

Сукупність біогеоценозів із відносно схожими характеристиками (передусім — рослинністю), які займають значну територію й розвиваються в схожих кліматичних умовах, називають біомами. Сьогодні на нашій планеті виділяють близько 30 основних біомів.

Біомаса й продуктивність біогеоценозу.

Біомасою називають кількість живої речовини на одиниці площі в момент спостереження. Це один із найважливіших статичних показників біогеоценозу. Загальна біомаса визначається сумою біомас усіх популяцій, які населяють даний біогеоценоз. Найчастіше за одиницю біомаси беруть 1 г сухої (рідше — сирої) органічної речовини на 1 м2. Біомаса біогеоценозів різних типів коливається в широких межах (табл. 2. 1.).

 

Продуктивністю називають здатність живої речовини створювати, трансформувати й нагромаджувати органічну речовину (біомасу). На відміну від біомаси — це динамічний показник біогеоценозу.

Коли комбайни рухаються полем, коли траулер піднімає свої сітки з моря, коли ведеться вирубування лісу, то в будь-якому разі це означає, що людина збирає врожай органічної речовини. Сонячне світло й збирання врожаю пов'язані функцією екосистеми — здатністю нагромаджувати енергію в органічній речовині, інакше — продуктивністю, від розміру й динаміки якої цілком залежить життя всього сущого на Землі, й у тому числі — людини. (Р. Уіттекер, американський еколог).

Продуктивність — одна з найважливіших характеристик: вона відображає ефективність роботи біогеоценозів, швидкість потоку енергії й речовин в їхніх ланцюгах живлення. Виражають продуктивність через показники продукції.

Продукція й деструкція.

Розрізняють продукцію первинну — швидкість засвоєння сонячної енергії у вигляді органічних речовин, синтезованих продуцентами, та продукцію вторинну — швидкість трансформації й накопичення органічної речовини консументами й редуцентами. Оцінюють первинну й вторинну продукції за кількістю органічної речовини, синтезованої (первинна продукція) чи накопиченої (вторинна продукція) за одиницю часу на одиниці площі, або за кількістю енергії, запасеної в цій речовині. Приблизно 1 кДж/(м2/рік) еквівалентне 0,06 г/(м2/рік) сухої органічної речовини.

Вторинна продукція завжди менша від первинної, оскільки створюється вона в результаті трансформації органічної речовини продуцентів після їх споживання консументами чи редуцентами. Зміни значень продукції при переході від нижніх трофічних рівнів (продуцентів) до верхніх (первинних, вторинних чи третинних консументів) мають стрибкоподібний характер: уявіть піраміду, в якої кожний наступний рівень становить приблизно лише 10 % попереднього. Зазвичай між первинною та вторинною продукціями є пряма залежність: чим більша первинна продукція, тим більша й вторинна, і навпаки.

На конкретне значення продукції впливає багато різних факторів, але, як правило, перше місце посідають вологість і температура, друге — забезпеченість біогеоценозу елементами мінерального живлення. Найбільшу продукцію мають біогеоценози вологого тропічного лісу. Далі продукція зменшується за градієнтами температури й вологості в напрямі від екватора до полюсів (рис. 2. 5.).

 

Окрім продукції, важливим показником є деструкція — швидкість розкладання органічної речовини до мінеральної. Процеси деструкції здійснюють редуценти — передусім гриби й бактерії. Різниця між первинною продукцією й деструкцією є показником акумуляції (накопичення) органічної речовини в біогеоценозі.

Речовини, запобігаючи тим самим їх вимиванню дощами й талою водою у Світовий океан. Тому багаті на гумус ґрунти (наприклад, чорноземи) містять великий запас поживних речовин, необхідних продуцентам, і є найродючішими.

У добре сформованих, стабільних біогеоценозах, таких як старі дубові ліси, ковилові степи, лишайникові тундри, органічна речовина майже не акумулюється. Тут первинна продукція практично дорівнює деструкції, тобто все, що синтезується рослинами, сповна споживається тваринами, грибами, бактеріями й розкладається до мінеральних речовин, які знову використовуються продуцентами й повертаються до біологічного кругообігу.

У біогеоценозах, які перебувають на стадії розвитку (так звані сукцесійні біогеоценози, наприклад піщані річкові коси, що заростають), первинна продукція перевищує деструкцію, тобто відбувається акумуляція органічної речовини. В процесі нагромадження органічної речовини перші, примітивні біогеоценози замінюються складнішими, стійкішими й продуктивнішими (наприклад, піщані річкові коси з часом перетворюються на заплавні луки). Коли нарешті біогеоценоз досягає стабільного (клімаксного) стану, деструкція врівноважує первинну продукцію, й акумуляція органічної речовини майже припиняється.

Проте, коли людина займає землі під агроценози, вона починає з урожаєм вилучати з біотопу біогенні елементи, які були нагромаджені в гумусі попереднім «диким» біогеоценозом, а потім використані культурними рослинами. Це порушує збалансований кругообіг — поживні речовини, зв'язані у вигляді органічної речовини врожаю, в екосистему вже не повертаються, й через їх нестачу ґрунт починає втрачати родючість. Продуктивність агроценозу зменшується. Для компенсації винесення елементів мінерального живлення в ґрунти агроценозів необхідно вносити мінеральні добрива, причому в тій кількості, яка дорівнює кількості вилучених з урожаєм біогенних елементів (рис. 2. 6.).

 

Баланс продукції й деструкції у водних біогеоценозах. У біогідроценозах нагромаджена органічна речовина або розкладається редуцентами до мінеральних речовин, які переходять у розчинений стан, або відкладається на дні, й таким чином вилучається з біологічного кругообігу. Якщо у воді нагромаджується багато розчинених мінеральних речовин, то, як правило, спостерігається масовий розвиток мікроскопічних водоростей — «цвітіння» води. При цьому на розкладання водоростевої біомаси використовується майже весь розчинений у воді кисень, а самі клітини водоростей можуть виділяти велику кількість токсичних речовин. Наприклад, динофітові водорості, які спричинюють у морях так звані «червоні припливи», виділяють токсин, подібний до отрути кураре; синьозелені водорості, що спричинюють «цвітіння» води у водосховищах, виділяють токсини, котрі класифікуються як фактори швидкої й дуже швидкої смерті. Через отруєння води токсинами й нестачу кисню починаються замори риби, масова загибель інших гідробіонтів, вода стає небезпечною для здоров'я людини.

Переважання продукції над деструкцією, яке супроводжується значним збільшенням у біотопі вмісту поживних речовин, називають евтрофікацією (від грец. ев — добре, легко й трофе — живлення). В природних водоймах процеси евтрофікації зазвичай відбуваються повільно — віками й тисячоліттями, оскільки продукція, як і в наземних біогеоценозах, майже врівноважується деструкцією. Проте сьогодні під впливом діяльності людини евтрофікація водного середовища відбувається з величезною швидкістю: вміст біогенних елементів у воді збільшується передусім через скидання у водойми багатих на біогенні елементи стічних вод або надходження цих елементів у водне середовище із затоплених родючих ґрунтів унаслідок створення величезних рівнинних водосховищ, зокрема й на Дніпрі.

Швидку евтрофікацію водойм, яка відбувається під впливом людини, називають антропогенною евтрофікацією.

Просторова структура біогеоценозу.

Біогеоценози ніколи не бувають цілком однорідними. Навпаки, вони мають свою певну просторову структуру, яка є «обличчям» даного біогеоценозу. Просторова структура вбирає в себе ярусність і горизонтальну неоднорідність — мозаїчність.

Ефективність використання сонячного світла збільшується, коли воно вловлюється на різних висотах, починаючи з поверхні землі й до кількох десятків метрів (або від дна до поверхні води в біогідроценозах). Одновисотні зарості називають ярусами. Зазвичай у біогеоценозах суші виділяють деревний, чагарниковий, трав'янистий і мохово-лишайниковий яруси. Ступінь розвитку ярусної структури великою мірою визначає продуктивність біогеоценозів. Найбільшу первинну продукцію мають лісові біогеоценози, причому простежується загальна закономірність: чим складніша ярусна структура, тим більша продуктивність біогеоценозу. Наприклад, у вологих тропічних лісах виділяють до дев'яти ярусів, у широколистяних — у середньому чотири, у хвойних — три, савани й степи зазвичай двоярусні, а тундри й пустелі — одноярусні. Відповідно й продуктивність у цьому ряді поступово знижується: від найбільшої в тропічних лісах до найменшої — в пустелях і тундрах.

Неоднорідні біогеоценози й у горизонтальній площині. Завжди можна знайти густі або розріджені плями рослинності, нори та лігвища тварин, скупчення грибів, ділянки поверхні, які різняться освітленістю, вологістю тощо. Як правило, на таких ділянках склад і чисельність біоти дещо інші, ніж на основній території, зайнятій даним біогеоценозом.

Горизонтальна й вертикальна неоднорідність біогеоценозу зумовлює й деяку неоднорідність процесів трансформації енергії в його межах. Основною коміркою трансформації енергії в біогеоценозі є консорція — окрема особина або популяція рослин і просторово чи трофічно пов'язані з нею популяції інших рослин, тварин, грибів, бактерій. Назву консорції дають за назвою рослини, навколо якої групуються всі інші пов'язані з нею організми (так звані консорти). Наприклад, у дубовому лісі до консорції дуба входять: шапкові гриби, які утворюють мікоризу, паразитичні гриби-трутовики, лишайники, що оселяються на корі, птахи, що гніздяться на кроні, гусениці й довгоносики, що поїдають листя, павуки, що прикріплюють до гілок павутиння, бактерії, що розкладають листові опади, кабани, які вишукують і поїдають жолуді, та багато інших представників, життя котрих у даному конкретному місці було б неможливим, якби тут не ріс дуб. Саме на рівні консорцій рухаються енергія й речовина трофічними ланцюгами в біогеоценозах.

Ступінь насиченості біогеоценозу різноманітними консорціями залежить від його видового багатства, тобто кількості видів, які живуть у даному біогеоценозі. Чим більше видів у біогеоценозі, тим краще він саморегулюється, тим стійкіший до дії різних несприятливих факторів (окрім катастрофічних).




Поделиться с друзьями:


Дата добавления: 2015-05-24; Просмотров: 386; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.051 сек.