Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Диэлектрики, проводники, сверхпроводники и полупроводники




Общие сведения об электропроводности веществ

Полупроводники и p-n переходы

По электропроводности вещества можно разделить на четыре группы: диэлектрики, проводники, сверхпроводники и полупроводники.

Диэлектрики – это вещества, которые существенно препятствуют протеканию через них электрического тока ввиду высокого удельного сопротивления, часто превышающего 108 Ом • м. Диэлектрики, которые применяют в качестве изоляции, например, проводов, обычно обладают на много порядков более высоким сопротивлением.

Проводники – это материалы, которые почти не препятствуют протеканию по ним электрического тока благодаря низкому удельному сопротивлению, обычно не превышающему 10–5 Ом • м. Металлические проводники используют в кабелях и проводах в качестве токоведущих шин.

Сверхпроводники – это материалы, которые при охлаждении до некоторой критической температуры резко уменьшают удельное сопротивление до нуля. В результате отсутствуют потери энергии на омическом сопротивлении, что позволяет создавать мощные высокоэффективные кабели, трансформаторы мощностью в мегаватты с высоким КПД и т.п. К сверхпроводникам относят соединения NbN, NbTi, Nb3Sn и другие. У большинства сверхпроводников критическая температура лежит вблизи абсолютного нуля, что снижает практическую пригодность этих материалов.

Полупроводники – это вещества, удельное сопротивление которых зависит от внешних условий, например, флюктуаций температуры, изменений интенсивности облучения световым потоком и прочего. В результате, в определённых условиях полупроводники могут менять своё удельное сопротивление, и оно может стать со всеми промежуточными градациями либо таким, как у проводников, либо как у диэлектриков. При температуре вблизи абсолютного нуля полупроводники обладают диэлектрическими свойствами, а при нагреве выше определённой критической температуры они проявляют свойства проводников. Зависимость их сопротивления от температуры нелинейна.

 

2.1.2. Носители заряда. Проводимости полупроводников: собственная и примесная

Собственным полупроводником называют полностью лишённый примесей полупроводник с идеальной кристаллической решёткой без дефектов. Его также называют полупроводником i-типа (от слова intrinsic, что в переводе с английского означает «собственный»). Собственный полупроводник при температуре –273,15 °C является диэлектриком, т.е. при температуре абсолютного нуля в собственном полупроводнике отсутствуют свободные носители заряда. При температуре выше абсолютного нуля возникают колебания атомов в узлах кристаллической решётки. При получении большей энергии, нежели ширина запрещённой зоны, они разрывают ковалентные связи, образуя фононы, в результате чего возникают расположенные в непосредственной близости друг от друга пары носителей зарядов: дырок и электронов, которые стали свободными. Дырка – это незаполненная электроном ковалентная связь, которая, аналогично частице, обладает положительным зарядом, равным по модулю отрицательному заряду электрона. Образование электронно-дырочных пар называют генерацией носителей зарядов, обратный процесс – рекомбинацией зарядов. Генерацию пар носителей заряда, вызванную теплом, называют термогенерацией. Кроме того, появление электронно-дырочных пар происходит при облучении материала световым потоком, а также при помещении его в электрическое поле и пр. Последнее может быть как недостатком, так и достоинством. Если в полупроводнике, который поместили в электрическое поле, возникает движение носителей заряда, то его именуют дрейфом, а протекающий ток – дрейфовым током. Под действием электрического тока происходит миграция дырок: место дырки заполняет ближайший электрон, на месте которого возникает дырка, затем очередной электрон, расположенный рядом с дыркой, занимает её место и так далее. Собственной проводимостью называют проводимость полупроводника i-типа, возникшую в результате термогенерации носителей заряда. Если электрический ток был обусловлен неравномерным распределением носителей заряда, то такой ток называют диффузионным. Длительность времени от генерации до момента рекомбинации носителя заряда называют временем жизни, а пройденное им за это время расстояние называют диффузионной длиной.

Примесной называют проводимость полупроводника, в который были введены легирующие добавки. Полупроводник с примесями не может быть i-типа. Легирование – это процесс дозированного внесения примесей в полупроводник для придания ему новых свойств, которых не было в исходном материале, например, для изменения типа проводимости. Или таких новых свойств, например, как появление низкой зависимости к облучению светом, нечувствительностью полупроводника к полям (или, наоборот, высокой чувствительности) и прочему. Если при введении примеси в полупроводнике доминировать начнёт дырочная проводимость, то есть дырки собственного полупроводника будут «сложены» с дырками примеси, то такой полупроводник называют дырочного, или p-типа. А если превалировать станет электронная проводимость, то полупроводник называют электронного, или n-типа. В полупроводнике дырочного типа основными носителями заряда являются дырки, а в полупроводнике электронного типа – электроны. В полупроводнике электронного типа дырки будут неосновными носителями заряда, а электроны – основными. В полупроводнике дырочного типа электроны будут неосновными носителями заряда, а дырки – основными. Если при введении примеси концентрация электронов превысит концентрацию дырок, то её называют донорной примесью. А если с введением примеси концентрация дырок станет больше концентрации электронов, то такую примесь называют акцепторной. В полупроводники, которые легируют при производстве электронных компонентов, обычно вводят в неодинаковых концентрациях и акцепторную, и донорную примеси.

Если концентрация примесей в полупроводнике будет очень велика и станет достигать ориентировочно 1021… 1024 атомов на 1 см3, то такой полупроводник, близкий по свойствам к металлу, называют вырожденным. В отношении классификации безразлично, какая примесь – донорная или акцепторная – привела к образованию вырожденного полупроводника. Вырожденные полупроводники практически не реагируют на флюктуации температуры.

 




Поделиться с друзьями:


Дата добавления: 2015-05-07; Просмотров: 3233; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.