Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Основные технико-экономические показатели




СЭС, использующие двигатель Стирлинга. Представляют собой СЭС с параболическими концентраторами, у которых в фокусе установлен двигатель Стирлинга. Существуют конструкции двигателей Стирлинга, которые непосредственно преобразуют колебания поршня в электрическую энергию, без использования кривошипно-шатунного механизма. Это позволяет достичь высокой эффективности преобразования энергии. Эффективность таких электростанций достигает 31,25%. В качестве рабочего тела используется водород или гелий.

Комбинированные СЭС. Часто на СЭС различных типов дополнительно устанавливают теплообменные аппараты для получения горячей воды, которая используется как для технических нужд, так и для горячего водоснабжения и отопления. В этом и состоит суть комбинированных СЭС. Также на одной территории возможна параллельная установка концентраторов и фотобатарей, что тоже считается комбинированной СЭС.

 

2 Показатели и влияние солнечных электростанций на экологию

 

Перспективы солнечной энергетики. Использования солнечной энергии может быть полезно в нескольких отношениях. Во-первых, при замене ею ископаемого топлива уменьшается загрязнение воздуха и воды. Во-вторых, замена ископаемого топлива означает сокращение импорта топлива, особенно нефти. В-третьих, заменяя атомное топливо, мы снижаем угрозу распространения атомного оружия. Наконец, солнечные источники могут обеспечить нам некоторую защиту, уменьшая нашу зависимость от бесперебойного снабжения топливам. Солнечные установки практически не требуют эксплуатационных расходов, не нуждаются в ремонте и требуют затрат лишь на их сооружение и поддержание в чистоте. Главное препятствие на пути их широкого распространения- высокая себестоимость электроэнергии: она в 6-8 раз выше, чем на ТЭС. Но с применением более простых по конструкции, а значит и более дешёвых гелиостатов себестоимость электроэнергии, вырабатываемой СЭС, должна существенно снизиться.

Работать они могут бесконечно. Учёные считают, что мощные солнечные электростанции по своей экономичности смогут стать в один ряд с современными тепловыми и атомными электростанциями.

К недостаткам всех перечисленных установок преобразования солнечной энергии относится то, что для них нужны большие площади, причем относительно недалеко (80 километров) от потребителя. Иначе потери при передаче электроэнергии будут недопустимо высоки. Правда, со временем могут появиться сверхпроводящие линии электропередач, которые решат проблему, однако, в ближайшем будущем строительство СЭС ограничивается недостатком вблизи крупных городов достаточно обширных свободных территорий. С другой стороны, солнечные батареи можно размещать на крышах зданий.

 

 

2.2 Влияние СЭС на экологию

Хорошо известно отрицательное воздействие энергетических производств на окружающую среду. Тепловые электростанции, например, сжигают в своих топках ценное материальное сырье — уголь, нефть, газ, — которое в течение миллиарда лет накапливалось на Земле в результате сложных, до конца не понятых процессов. Уничтожение этих запасов будет преступлением перед грядущими поколениями. Работа ТЭС характеризуется значительным тепловым загрязнением биосферы. Не менее 60% энергии, полученной при сгорании углеводородного топлива, бесполезно рассеивается в атмосфере, что ведет к повышению средней мировой температуры, отрицательно влияет на динамику атмосферы, на погодные условия вокруг электростанции. В результате сгорания топлива образуются токсичные продукты - угарный газ, двуокись серы, окислы азота, углеводороды, твердые частицы. Особенно велики выбросы сернистых соединений. Токсичные продукты, попадая в атмосферу, губительно воздействуют на живую и неживую природу Земли. Таким образом, эксплуатация тепловых электростанций отличается значительным потреблением минерально-сырьевых ресурсов, тепловым и химическим загрязнением биосферы Земли. Важным параметром следует считать также воздействие на биосферу на этапе создания энергосистемы — при производстве основных элементов, транспортировке к месту строительства, строительстве. Создание ТЭС характеризуется малым воздействием на окружающую среду.

В случае солнечных электростанций имеет место обратная картина — малое воздействие на окружающую среду во время эксплуатации и большое воздействие на этапе создания системы. Расчеты показывают, что для одной космической солнечной электростанции полезной мощностью 5 млн. кВт потребуется 500 тыс. т алюминия, 50 тыс. т кремния в качестве исходного материала для производства фотоэлектрических преобразователей, 150 млрд. кВт-ч электроэнергии для производства элементов конструкции станции и сопутствующих комплексов. Это может привести к нехватке сырья и энергии для развития других областей экономики государства-разработчика энергосистемы нового типа.

На этапе развертывания космической солнечной электростанции потребуется проводить большое число пусков сверхмощных ракет-носителей. При ограничении срока создания космической электростанции двумя годами частота пусков ракет-носителей грузоподъемностью 250 т составит не более двух суток. При этом в верхние слои атмосферы попадает более миллиона тонн продуктов сгорания ракетного топлива, в состав которых входят окислы азота, углерода, а также вода. Последствия такого загрязнения атмосферы непредсказуемы, очевидно, они будут носить негативный характер.

Важным аспектом эксплуатации космической солнечной электростанции следует также считать электромагнитное засорение среды. Непрерывная передача энергии из космоса на Землю в СВЧ-диапазоне волн будет представлять собой новый фактор неблагоприятного воздействия на биосферу. Максимальная плотность потока в энергетическом луче на поверхности Земли принимается равной 23 мВт/см2, на краю ректенны плотность снижается до значения 1 мВт/см2. На расстоянии около 7 км от центра ректенны плотность снизится до величины 10-2 мВт/см2; эта величина соответствует советскому медицинскому стандарту на безопасный уровень длительного СВЧ-облучения человека. Зона, лежащая внутри этого круга, может быть объявлена охранной, допускающей присутствие только обслуживающего персонала, облаченного в специальную одежду. Предстоит еще дополнительно исследовать воздействие электромагнитного излучения на флору, фауну, человека и технические устройства. Очевидно, что фоновое излучение будет создавать помехи работе приемных устройств радио- и телевизионных систем.

В целом по экологическим аспектам создания и эксплуатации космических солнечных электростанций может быть сделан вывод о том, что ее функционирование на орбите будет сопровождаться малым воздействием на окружающую среду, в то время как этапы производства и развертывания связываются со значительным потреблением сырьевых и энергетических ресурсов, большим тепловым и химическим загрязнением биосферы. Последствия такого загрязнения окружающей среды трудно предсказуемы, для их прояснения необходимы дополнительные исследования.

 

 

Заключение

 

В настоящее время используется лишь ничтожная часть солнечной энергии из-за того, что существующие солнечные батареи имеют сравнительно низкий коэффициент полезного действия и очень дороги в производстве. Однако не следует сразу отказываться от практически неистощимого источника чистой энергии: по утверждениям специалистов, гелиоэнергетика могла бы одна покрыть все мыслимые потребности человечества в энергии на тысячи лет вперед. Возможно, также повысить КПД гелиоустановок в несколько раз, а разместив их на крышах домов и рядом с ними, мы обеспечим обогрев жилья, подогрев воды и работу бытовых электроприборов даже в умеренных широтах, не говоря уже о тропиках. Для нужд промышленности, требующих больших затрат энергии, можно использовать километровые пустыри и пустыни, сплошь уставленные мощными гелиоустановками. Но перед гелиоэнергетикой встает множество трудностей с сооружением, размещением и эксплуатацией гелиоэнергоустановок на тысячах квадратных километров земной поверхности. Поэтому общий удельный вес гелиоэнергетики был и останется довольно скромным, по крайней мере, в обозримом будущем.

В настоящее время разрабатываются новые космические проекты, имеющие целью исследование Солнца, проводятся наблюдения, в которых принимают участие десятки стран. Данные о процессах, происходящих на Солнце, получают с помощью аппаратуры, установленной на искусственных спутниках Земли и космических ракетах, на горных вершина и в глубинах океанов.

Большое внимание нужно уделить и тому, что производство энергии, являющееся необходимым средством для существования и развития человечества, оказывает воздействие на природу и окружающую человека среду. С одной стороны в быт и производственную деятельность человека настолько твердо вошла тепло- и электроэнергия, что человек даже и не мыслит своего существования без нее и потребляет само собой разумеющиеся неисчерпаемые ресурсы. С другой стороны, человек все больше и больше свое внимание заостряет на экономическом аспекте энергетики и требует экологически чистых энергетических производств. Это говорит о необходимости решения комплекса вопросов, среди которых перераспределение средств на покрытие нужд человечества, практическое использование в народном хозяйстве достижений, поиск и разработка новых альтернативных технологий для выработки тепла и электроэнергии и т.д.

Сейчас учёные исследуют природу Солнца, выясняют его влияние на Землю, работают над проблемой применения практически неиссякаемой солнечной энергии.

 

Список использованных источников:

1. Андреев В.М., Грилихес В.А., Румянцев В.Д. Фотоэлектрическое преобразование концентрированного солнечного излучения. Л.: Наука, 1989

2. Виссарионов В.И., Дерюгина Г.В. Солнечная энергетика. М.: МЭИ, 2011

3. Журнал «Вокруг света» онлайн.- режим доступа: http://www.vokrugsveta.ru

4. Журнал «Наука и жизнь» онлайн. – режим доступа: http://www.techjournals.ru

5. Первая крупнейшая частная солнечная электростанция.// Воронов С.А. Эско.-2013.-№1

6. Энергетическая альтернатива.// Белова Н.Г. Энергосбережение.-2012.-№12

 

Приложение А

(обязательное)

Рисунок 1- СЭС башенного типа

 

 

Рисунок 2- СЭС тарельчатого типа

 

 

Рисунок 3- СЭС, использующие фотобатареи

Рисунок 4- СЭС, использующие параболические концентраторы

 

 

Рисунок 5- Комбинированные СЭС

 

Рисунок 6- Аэростатные СЭС

 

 




Поделиться с друзьями:


Дата добавления: 2015-05-08; Просмотров: 3469; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.033 сек.