Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Надежность электроснабжения. Параметры и характеристики функционирования 2 страница




Солнечный спектр содержит линии ионизированных и нейтральных металлов, а также ионизированного водорода. В нашей галактике Млечный Путь насчитывается свыше 100 млрд звёзд[11]. При этом 85 % звёзд нашей галактики — это звёзды, менее яркие, чем Солнце (в большинстве своём красные карлики). Как и все звёзды главной последовательности, Солнце вырабатывает энергию путём термоядерного синтеза. В случае Солнца подавляющая часть энергии вырабатывается при синтезе гелия из водорода.

Удалённость Солнца от Земли, 149,6 млн км, приблизительно равна астрономической единице, а видимый угловой диаметр при наблюдении с Земли, как и у Луны, — чуть больше полградуса (31—32 минуты). Солнце находится на расстоянии около 26 000 световых лет от центра Млечного Пути и вращается вокруг него, делая один оборот более чем за 200 млн лет[12]. Орбитальная скорость Солнца равна 217 км/с — таким образом, оно проходит один световой год за 1400 земных лет, а одну астрономическую единицу — за 8 земных суток[13]. В настоящее время Солнце находится во внутреннем крае рукава Ориона нашей Галактики, между рукавом Персея и рукавом Стрельца, в так называемом «Местном межзвёздном облаке» — области повышенной плотности, расположенной, в свою очередь, в имеющем меньшую плотность «Местном пузыре» — зоне рассеянного высокотемпературного межзвёздного газа. Из звёзд, принадлежащих 50 самым близким звёздным системам в пределах 17 световых лет, известным в настоящее время, Солнце является четвёртой по яркости

 

44. Расчет мощности солнечных радиации. Виды солнечных радиации

 

Все фотоэлектрические системы (ФЭС) можно разделить на два типа: автономные и соединенные с электрической сетью. Станции второго типа отдают излишки энергии в сеть, которая служит резервом в случае возникновения внутреннего дефицита энергии.

Автономная система в общем случае состоит из набора солнечных модулей, размещенных на опорной конструкции или на крыше, аккумуляторной батареи (АКБ), контроллера разряда - заряда аккумулятора, соединительных кабелей. Если потребителю необходимо иметь переменное напряжение, то к этому комплекту добавляется инвертор-преобразователь постоянного напряжения в переменное.

Под расчетом ФЭС понимается определение номинальной мощности модулей, их количества, схемы соединения; выбор типа, условий эксплуатации и емкости АКБ; мощностей инвертора и контроллера заряда-разряда; определение параметров соединительных кабелей.

Прежде всего надо определить суммарную мощность всех потребителей, подключаемых одновременно. Мощность каждого из них измеряется в ваттах и указана в паспортах изделий. На этом этапе уже можно выбрать мощность инвертора, которая должна быть не менее, чем в 1,25 раза больше расчетной. Следует иметь в виду, что такой хитрый прибор как компрессорный холодильник в момент запуска потребляет мощность в 7 раз больше паспортной. Номинальный ряд инверторов 150, 300, 500, 800, 1500, 2500, 5000 Вт. Для мощных станций (более 1кВт) напряжение станции выбирается не менее 48 В, т.к. на больших мощностях инверторы лучше работают с более высоких исходных напряжений.

 

Следующий этап - это определение емкости АКБ. Емкость АКБ выбирается из стандартного ряда емкостей с округлением в сторону, большую расчетной. А расчетная емкость получается простым делением суммарной мощности потребителей на произведение напряжения АКБ на значение г

 

Виды солнечной радиации

Прямая радиация — солнечная радиация, доходящая до земной поверхности в виде пучка параллельных лучей, исходящих непосредственно от солнечного диска.

Рассеянная радиация — солнечная радиация, которая была рассеяна в атмосфере, поступает на земную поверхность по всему небесного свода. В пасмурные дни она является единственным источником энергии в приземных слоях атмосферы.

Суммарная радиация — совокупность прямой и рассеянной солнечной радиации, поступающей в естественных условиях на земную поверхность. Она зависит от географической широты, высоты над уровнем моря, прозрачности атмосферы и облачности. В горных районах распределение солнечной радиации очень сложный, потому что ее величина определяется также еще экспозицией и крутизной склонов. Распределение суммарной радиации представлено для равнин и предгорий с абсолютными высотами до 600 м.

Количество суммарной радиации уменьшается от экватора к полюсам, поскольку количество радиации, достигла земной поверхности, зависит от угла падения лучей, т.е. от широты местности. На всей территории СССР, кроме некоторых районов Средней Азии, юга Восточной Сибири и Дальнего Востока, зимой преобладает рассеянная радиация, летом — прямая солнечная радиация.

Отношение отраженной радиации к той, что поступила на данную поверхность, называется альбедо. Различные типы поверхности обладают различными показателями отражения солнечной радиации. Например, влажный чернозем имеет альбедо всего 5-10%, снег отражает 80-90% солнечной энергии.

 

45.Приборы для измерения солнечной радиации. Виды солнечной радиации

 

Первыми стандартными приборами для измерения прямой солнечной радиации были пиргелиометр Ангстрема, разработанный в Стокгольме, и проточный калориметр Аббота из Смитсонианского института в Вашингтоне. В пиргелиометре Ангстрема приводятся в соответствие тепловые эффекты облучения приемника солнечной энергии и электронагрева затененного элемента. Для измерения уровня электронагрева используются обычные методы электрических измерений. Проточный калориметр Аббота имеет полость, которая поглощает солнечное излучение, а повышение температуры циркуляционной охлаждающей воды пропорционально интенсивности падающего излучения. Пиргелиометр Аббота с серебряным диском является еще одним стандартным прибором, в котором скорость изменения температуры диска приближенно пропорциональна интенсивности падающего излучения. В течение многих лет отмечалось, что американские и европейские измерения радиации не согласуются между собой, и, как указывали различные исследователи во многих странах, расхождение составляло от 2,5 до 6%. В сентябре 1956 г. была установлена новая Международная пиргелиометрическая шкала 1956, которая внесла поправки +1,5% к шкале Ангстрема и -2,0% к смитсонианской шкале Аббота. Впоследствии все приборы калибровались в соответствии с Международной пиргелиометрической шкалой 1956.

 

Принцип действия большинства пиранометров, которые используются для измерения суммарной радиации, а при затенении от прямых лучей и диффузной радиации, основан на измерении разности температур черных (поглощающих излучение) и белых (отражающих излучение) поверхностей с помощью термоэлементов. Последние дают сигнал в милливольтах, который можно легко контролировать с помощью целого ряда стандартных самопишущих систем. Характерным примером такого типа приборов является пиранометр Эппли. Другой, хорошо известный тип пиранометра - пиранометр Робича - основан на различном расширении биметаллического элемента, тогда как с помощью дистилляционного пиранометра Беллани, в котором спирт конденсируется в калиброванном конденсаторе, измеряется суммарная солнечная радиация за данный промежуток времени. Значительно более простые измерения, которые проводятся во многих местах, связаны с определением продолжительности солнечного сияния, т. е. времени, когда диск Солнца не закрыт облаками или дымкой. Она измеряется с помощью самопишущего прибора Кэмпбелла-Стокса, в котором используется сферическая линза, фокусирующая солнечное излучение на термочувствительной бумаге. При наличии прямой солнечной радиации на бумаге появляется след в виде прожога.

 

Виды солнечной радиации

Прямая радиация — солнечная радиация, доходящая до земной поверхности в виде пучка параллельных лучей, исходящих непосредственно от солнечного диска.

Рассеянная радиация — солнечная радиация, которая была рассеяна в атмосфере, поступает на земную поверхность по всему небесного свода. В пасмурные дни она является единственным источником энергии в приземных слоях атмосферы.

Суммарная радиация — совокупность прямой и рассеянной солнечной радиации, поступающей в естественных условиях на земную поверхность. Она зависит от географической широты, высоты над уровнем моря, прозрачности атмосферы и облачности. В горных районах распределение солнечной радиации очень сложный, потому что ее величина определяется также еще экспозицией и крутизной склонов. Распределение суммарной радиации представлено для равнин и предгорий с абсолютными высотами до 600 м.

Количество суммарной радиации уменьшается от экватора к полюсам, поскольку количество радиации, достигла земной поверхности, зависит от угла падения лучей, т.е. от широты местности. На всей территории СССР, кроме некоторых районов Средней Азии, юга Восточной Сибири и Дальнего Востока, зимой преобладает рассеянная радиация, летом — прямая солнечная радиация.

Отношение отраженной радиации к той, что поступила на данную поверхность, называется альбедо. Различные типы поверхности обладают различными показателями отражения солнечной радиации. Например, влажный чернозем имеет альбедо всего 5-10%, снег отражает 80-90% солнечной энергии.

46.Фотаэлементы. Вольтамперная характеристика фотоэлементов. Электрическая схема ФЭП

 

Фотоэлемент — электронный прибор, который преобразует энергию фотонов в электрическую энергию. Первый фотоэлемент, основанный на внешнем фотоэффекте, создал Александр Столетов в конце XIX века.

Преобразование энергии в ФЭП основано на фотоэлектрическом эффекте, который возникает в неоднородных полупроводниковых структурах при воздействии на них солнечного излучения.

 

Неоднородность структуры ФЭП может быть получена легированием одного и того же полупроводника различными примесями (создание p-n переходов) или путём соединения различных полупроводников с неодинаковой шириной запрещённой зоны — энергии отрыва электрона из атома (создание гетеропереходов), или же за счёт изменения химического состава полупроводника, приводящего к появлению градиента ширины запрещённой зоны (создание варизонных структур). Возможны также различные комбинации перечисленных способов.

Эффективность преобразования зависит от электрофизических характеристик неоднородной полупроводниковой структуры, а также оптических свойств ФЭП, среди которых наиболее важную роль играет фотопроводимость. Она обусловлена явлениями внутреннего фотоэффекта в полупроводниках при облучении их солнечным светом.

 

47.Регионы Казахстана, где имеются ветровые потенциалы. Энергетическая схема ФЭП

 

Первый Казахстана представляет собой интерактивную карту, позволяющую получать информацию о среднегодовой скорости ветра в выбранной точке и, таким образом, определять перспективность использования энергии ветра в тех или иных местах для получения электроэнергии. Согласно ветровому атласу, более 50 тыс. км² территории Казахстана имеет хороший ветровой потенциал, который теоретически может быть использован для выработки около 900 тыс. ГВт·ч электроэнергии в год.

Наиболее подходящими территориями для развития ветровой электроэнергетики являются: в Алматинской области – Джунгарские ворота и Чуйский коридор, в Акмолинской области – район города Ерментау, на западе Казахстана – Атырауская область и Мангистауская, а также ряд районов на юге Казахстана.

 

48.Виды и принципы работы ветрогенератора. Солнечные электростанции

 

Видысетевой ветрогенератор, автономные ветрогенераторы

 

принципы работы ветрогенераторавтономныеветрогенераторы состоят из генератора, хвостовика, мачты, контроллера, инвертора и аккумуляторной батареи. У классических ветровых установок – 3 лопасти, закреплённых на роторе. Вращаясь ротор генератора создаёт трёхфазный переменный ток, который передаётся на контроллер, далее ток преобразуется в постоянное напряжение и подаётся на аккумуляторную батарею. Ток проходя по аккумуляторам одновременно и подзаряжает их и использует АКБ как проводники электричества. Далее ток подаётся на инвертор, где приводиться в наши привычные показатели: переменный однофазный ток 220В, 50 Гц. Если потребление небольшое то сгенерированного электричества хватает для электроприборов и освещения, если тока с ветряка мало и не хватает - то недостаток покрывается за счёт аккумуляторов. Такой же принцип в автомобилях: когда мы едем, генератор в машине заряжает аккумуляторы и снабжает электричеством все приборы в машине, когда машина останавливается, то аккумулированный ток идёт из АКБ. Ничего сверхсложного в ветряках нет, в них используются все те изобретения которые мы постоянно используем каждый день, не подозревая об этом.

Ветрогенераторы современных конструкций позволяют использовать экономически эффективно энергию ветра. С помощью ветрогенераторов сегодня можно не только поставлять электроэнергию в «сеть» но и решать задачи электроснабжения локальных или островных объектов любой мощности.

 

Солнечная электростанция — инженерное сооружение, служащее преобразованию солнечной радиации в электрическую энергию. Способы преобразования солнечной радиации различны и зависят от конструкции электростанции.

 

49. Геотермальные источники энергии. Принцип работы геотермальных электростанции

 

Геотермальная энергетика — направление энергетики, основанное на производстве электрической энергии за счёт энергии, содержащейся в недрах земли, на геотермальных станциях. Обычно относится к альтернативным источникам энергии, использующим возобновляемые энергетические ресурсы.

В вулканических районах циркулирующая вода перегревается выше температуры кипения на относительно небольших глубинах и по трещинам поднимается к поверхности, иногда проявляя себя в виде гейзеров. Доступ к подземным тёплым водам возможен при помощи глубинного бурения скважин. Более чем такие паротермы распространены сухие высокотемпературные породы, энергия которых доступна при помощи закачки и последующего отбора из них перегретой воды. Высокие горизонты пород с температурой менее 100 °C распространены и на множестве геологически малоактивных территорий, потому наиболее перспективным считается использование геотерм в качестве источника тепла.

Принцип работы геотермальных электростанции

сновным блоком ГТЭС является энергоблок, в который включены газотурбинная установка (при необходимости с редуктором) и синхронный генератор с системой возбуждения.

На двигателе предусмотрены системы запуска, защиты и сигнализации, противообледенения, а также в комплект входят система всасывания и очистки воздуха, блок маслоснабжения, автоматики, пожаротушения и вентиляции, укрытия двигателя. Атмосферный воздух через входное воздухоочистительное устройство и камеру всасывания поступает в двигатель. Воздухоочистительное устройство предназначено для очистки циклового воздуха газотурбинной установки от капельной влаги, снега, пылевых частиц, вызывающих эрозийный износ лопаточного аппарата компрессора газотурбинной установки.

В компрессоре двигателя воздух сжимается и поступает в камеру сгорания, где в потоке воздуха сжигается топливо, поступающее через форсунки.

Далее горячие газы поступают на лопатки турбины, где тепловая энергия потока превращается в механическую энергию вращения роторов турбин.

Мощность, полученная на валу свободной турбины, расходуется на привод турбогенератора, который вырабатывает электроэнергию. Турбогенератор предназначен для выработки электроэнергии при работе в маневренных режимах в агрегате с газовой турбиной. Крутящий момент от двигателя передается на ротор генератора. При вращении ротора возникает магнитный момент, создающий в обмотках статора электрический ток. С помощью системы возбуждения генератора поддерживается постоянство напряжения на всех режимах работы генератора.

Отработавшие в двигателе газы через выхлопное устройство и шумоглушитель уходят в дымовую трубу. Если предусмотрена утилизация тепла выхлопных газов, то после выхлопного устройства отработанные газы поступают на утилизационный теплообменник. Вместо утилизационного теплообменника в цепочке может находится котел-утилизатор.

При наличии котла-утилизатора необходимахимводоочистка для приготовления химически очищенной воды с целью восполнения пароводянных потерь на станции и невозврата конденсата с производства.

Система автоматического управления ГТЭС обеспечивает полную автоматизацию пуска станции, синхронизацию электрогенератора, а также контроль необходимого числа параметров в эксплуатации.

Система подготовки топливного газа включает в себя блоки очистки газа от мехпримесей, капельной жидкости и сероводорода.

 

50. Энергия океанических и морских волн пути их использования. Энергетические установки на их основе

 

Энергетические установки на их основе

Эне́ргия волн океана — энергия, переносимая волнами на поверхности океана. Может использоваться для совершения полезной работы — генерации электроэнергии, опреснения воды и перекачки воды в резервуары. Энергия волн — неисчерпаемый источник энергии.

Мощность волнения оценивают в кВт на погонный метр, то есть в кВт/м. По сравнению с ветровой и солнечной энергией энергия волн обладает гораздо большей удельной мощностью. Так, средняя мощность волнения морей и океанов, как правило, превышает 15 кВт/м. При высоте волн в 2 м мощность достигает 80 кВт/м. То есть, при освоении поверхности океанов не может быть нехватки энергии. Конечно, в механическую и электрическую энергию можно использовать только часть мощности волнения, но для воды коэффициент преобразования выше, чем для воздуха — до 85 %.

Волновая энергия представляет собой сконцентрированную энергию ветра и, в конечном итоге, солнечной энергии. Мощность, полученная от волнения всех океанов планеты, не может быть больше мощности, получаемой от Солнца. Но удельная мощность электрогенераторов, работающих от волн, может быть гораздо большей, чем для других альтернативных источников энергии.

Несмотря на схожую природу, энергию волн принято отличать от энергии приливов и океанских течений. Выработка электроэнергии с использованием энергии волн не является распространённой практикой, в настоящее время в этой сфере проводятся только экспериментальные исследования.

Представляет интерес и использование энергии волн для движения судов (движители волновые). Удельная мощность волнения превышает удельную мощность ветра, т. е. размеры волнового привода могут быть существенно меньше, чем парусное оснащение. Качка судна, как правило, превышает по своей мощности мощность необходимой силовой установки. Волнение на море бывает даже в штиль. Волнение — это колебательный процесс. В отличие от ветра, который может дуть и против движения судна, волнение можно использовать при любом направлении движения фронта волн относительно судна. При шторме волновой привод может обеспечить судну достаточно энергии для борьбы со стихией.

Энергия морских волн значительно выше энергии приливов. Приливное рассеяние (трение, вызванное Луной) составляет порядка 2,5 ТВт. Энергия волн значительно выше и может быть использована значительно шире, чем приливная. Страны с большой протяжённостью побережья и постоянными сильными ветрами, такие как Великобритания и Ирландия, могут генерировать до 5 % требуемой электроэнергии за счёт энергии волн. В частности в Великобритании построен волновой генератор Oyster. Избыток генерируемой энергии (общая проблема всех непостоянных источников энергии) может быть использован для выработки водорода или алюминия.

Основная задача получения электроэнергии из морских волн — преобразование движения вверх-вниз во вращательное для передачи непосредственно на вал электрогенератора с минимальным количеством промежуточных преобразований, при этом желательно, чтобы большая часть оборудования находилась на суше для простоты обслуживания. Недавно выдан Российский патент № 82283 на механизм, позволяющий преобразовывать движения качания поплавка на волнах с любой амплитудой во вращение[источник не указан 1192 дня]. Выходной вал устройства вращается как от движения поплавка вниз, так и вверх. Механизм, находящийся на берегу, соединяется с поплавком штангой. Кроме того, механизмы можно секционировать на общий вал для получения большей суммарной мощности.

 

 




Поделиться с друзьями:


Дата добавления: 2015-05-08; Просмотров: 407; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.014 сек.