Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Ограничение и обобщение понятий




Деление понятий. Классификация.

Для устранения неточности понятий используется другая логическая операция – деление. Она приобретает особое значение, когда объем рассматриваемых нами понятий очень велик и в нем трудно ориентироваться. Тогда мы часто разбиваем его на какие-то части, группы, классы – это и есть деление.

Деление есть логическая операция, раскрывающая объем понятия посредством разбиения его на виды.

Например, органы чувств подразделяются на органы зрения, слуха, обоняния, осязания и вкуса; высшие растения делятся на травы, кустарники и деревья. В повседневной жизни мы разделяем людей в зависимости от их роста на высоких, средних и маленьких; пищу, которую потребляем, – на вкусную и невкусную; вещи, которые носим, – на дорогие и дешевые…

В операции деления присутствуют три элемента: делимое понятие; основание деления – один из признаков предметов, образующих объем делимого понятия, опираясь на который мы производим деление; члены деления – те виды, которые получаются в результате деления. Например: люди делятся на блондинов, брюнетов, шатенов, рыжих и альбиносов. Здесь делимым понятием будет понятие «люди»; основанием деления – цвет волос; членами деления – блондины, брюнеты и т.д. Для того чтобы деление не приводило нас к ошибкам, чтобы оно действительно раскрывало объем интересующего нас понятия, при совершении деления нужно соблюдать некоторые простые правила.

1. Деление должно быть соразмерным, т.е. сумма членов деления должна быть в точности равна объему делимого понятия.

Нарушение этого правила приводит к ошибкам двух видов.

а) Неполное деление – когда перечисляются не все виды делимого родового понятия, например:

«Энергия делится на механическую и химическую» (не указана электрическая и атомная энергия).

б) Деление с лишними членами – когда в результате деления к объему делимого понятия добавляются предметы, которых там первоначально не было, например: «Химические элементы делятся на металлы, неметаллы и сплавы» (сплавы не входят в объем понятия «химический элемент»).

2. Члены деления должны исключать друг друга, т.е. не иметь общих элементов, быть соподчиненными понятиями, объемы которых не пересекаются. Иначе говоря, каждый элемент из объема делимого понятия должен попасть только в один класс, в противном случае возникнет путаница, а не прояснение объема интересующего нас понятия. Пример: «Войны бывают справедливыми, несправедливыми, освободительными, захватническими и мировыми». Здесь члены деления не исключают друг друга: справедливая война может быть освободительной, захватнические войны – все несправедливые, и те и другие могут быть мировыми. Хорошее деление можно сравнить с разрезанием пирога: куски пирога четко отделены друг от друга и не может быть так, чтобы часть одного куска была в то же время частью другого куска. Таким же должно быть и деление понятий.

3. Деление должно производиться только по одному основанию, нельзя в процессе деления заменять один признак, опираясь на который вы начали деление, другим признаком. Например: «Люди бывают богатыми, бедными и лысыми».

Деление понятий следует отличать от мысленного расчленения предмета на части. Последняя операция также широко используется в повседневной, жизни: квартиру мы членим на комнаты,кухню, коридор и туалет; автомобиль – на мотор, кузов, колеса; завод – на цеха и т.п. Однако деление понятий и расчленение предмета на части – совершенно разные операции, и их смешение приводит к путанице. Кому, например, нужно такое деление: «Дома делятся на жилые, нежилые и квартиры» или «Самолеты делятся на гражданские, военные, колеса и крылья»?

8) Сейчас я докажу вам, что 3 раза по 2 будет не 6, как выдумаете, а всего 4. Следите за моими рассуждениями. У меня в руке 2 спички – 1 пара.

Я ломаю одну спичку и получаю вторую пару. Две пары есть.

Я ломаю вторую спичку и получаю третью пару.

Однако, взяв три раза по 2, я получаю всего 4. Посмотрите и убедитесь: на моей ладони лежат всего 4 обломка.

Где я совершил ошибку?

13. Непосредственные умозаключения путем преобразования внутренней структуры суждения: обращение, превращение.

Выводы в каждом из этих умозаключений получаются в соответствии с логическими правилами, которые обусловлены видом суждения — его количественными и качественными характеристиками.

1. Превращение.

Преобразование суждения в суждение, противоположное по качеству с предикатом, противоречащим предикату исходного суждения, называется превращением. Превращение опирается на правило: двойное отрицание равносильно утверждению: m р= р.

Превращать можно общеутвердительные, общеотрицательные, частноутвердительные и частноотрицательные суждения.

Общеутвердительное суждение (А) превращается в общеотрицательное (Е). Например: «Все сотрудники нашего коллектива — квалифицированные специалисты. Следовательно, ни один сотрудник нашего коллектива не является неквалифицированным специалистом».

Схема превращения суждения А:

Все S суть Р Ни одно S не есть не-Р

Общеотрицательное суждение (Е) превращается в общеутвердительное (А). Например: «Ни одно религиозное учение не является научным. Следовательно, всякое религиозное учение является ненаучным».

Схема превращения суждения Е:

Ни одно S не есть Р Все S суть не-Р

Частноутвердительное суждение (1) превращается в частно-отрицательное (О). Например: «Некоторые государства являются федеративными. Следовательно, некоторые государства не являются нефедеративными».

Схема превращения суждения /:

Некоторые S суть Р

Некоторые S не суть не-Р

'^И Частноотрицательное суждение (О) превращается в частно^Ш

утвердительное (I). Например: «Некоторые преступления не явля-^В ются умышленными. Следовательно, некоторые преступления явля-Д ются неумышленными».

Схема превращения суждения О.

Некоторые S нс суть Р Некоторые S суть не-Р

Таким образом, чтобы превратить суждение, нужно заменить его] связку на противоположную, а предикат — на понятие, противоре-чащее предикату исходного суждения. Суждение, полученное по-| средством превращения, сохраняет количество, но изменяет качест-j во исходного суждения. Субъект исходного суждения не изменяется.! Заключения, полученные посредством превращения, уточняют:

наши знания. Устанавливая отношения между субъектом и понятии ем, противоречащим предикату исходного суждения, мы рассматри^ ваем предмет суждения с новой стороны, фиксируя внимание на свойстве, не совместимом со свойством, выраженным в предикате:

исходного суждения.

В этом смысл превращения. Поэтому заключения, полученные с помощью этой логической операции, содержат! некоторые новые знания о предмете.;

2. Обращение.

Преобразование суждения, в результате которого субъект ыс-| ходного суждения становится предикатом, а предикат — субьек" том заключения, называется обращением.

Обращение подчиняется правилу: термин, не распределенный в посылке, не может быть распределен в заключении'.

Различают простое (чистое) обращение и обращение с ограничением.

Простым, или чистым, называется обращение без изменения количества суждения. Так обращаются суждения, оба термина которых распределены или оба не распределены. Если же предикат исходного суждения не распределен, то он не будет распределен и в заключении, где он становится субъектом. Поэтому его объем ограничивается. Такое обращение называется обращением с ограничением.

О распределенное™ терминов в суждениях см. гл. IV, § 2.

Общеутвердительное суждение (А) обращается в частноутвер-дительное (I), т.е. с ограничением. Например: «Все студенты нашей группы (S) сдали экзамены (Р-). Следовательно, некоторые сдавшие экзамены (Р-) — студенты нашей группы (S-)». В исходном суждении предикат не распределен, поэтому он, становясь субъектом заключения, также не распределен. Его объем ограничивается («некоторые сдавшие экзамены»).

Схема обращения суждения А:

Все S суть Р Некоторые Р суть S

Общеутвердительные выделяющие суждения (в них предикат распределен) обращаются без ограничения по схеме:

Все S, и только S, суть Р Все Р суть S

Общеотрицательное суждение (Е) обращается в общеотрицательное (Е), т.е. без ограничения. Например: «Ни один студент нашей группы (S) не является неуспевающим (Р). Следовательно, ни один неуспевающий (Р) не является студентом нашей группы (S)». Простое обращение этого суждения возможно потому, что его предикат («неуспевающие») распределен. Схема обращения суждения Е:

Ни одно S не есть Р Ни одно Р не есть S

Частноутвердительное суждение (I) обращается в частноу-твердительное (I). Это простое (чистое) обращение. Предикат, не распределенный в исходном суждении, не распределен и в заключении. Количество суждения не изменяется. Например: «Некоторые студенты нашей группы (S-) — отличники (Р~). Следовательно, некоторые отличники (Р-) — студенты нашей группы (S-). Схема обращения суждения I:

Некоторые S суть Р Некоторые Р суть S

Частноутвердительное выделяющее суждение (предикат распределен) обращается в общеутвердительное. Например: «Некоторые общественно опасные деяния (S-) являются преступлениями против правосудия (Р).Следовательно, все преступления против правосудия (Р) являются общественно опасными деяниями (S-)».

 

Ограничение - логическая операция перехода от родового понятия к видовому (например, “поэт”, “великий поэт”, “вели­кий английский поэт”, “великий английский поэт Джордж Ноэл Гордон Байрон”). При ограничении мы переходим от понятия с большим объемом к понятию с меньшим объемом. Пределом ограничения является единичное понятие (в данном примере это “великий английский поэт Джордж Ноэл Гордон Байрон”).

Обобщение — логическая операция, обратная ограничению, когда осуществляется переход от видового понятия к родовому путем отбрасывания от первого его видообразующего признака или признаков. Пример обобщения: “Опера П. И. Чайковского “Евгений Онегин”, “опера П. И. Чайковского”, “опера русского композитора XIX в.”, “опера русского композитора”, “опера”, “произведение музыкального искусства”, “произведение искус­ства”. При обобщении мы переходим от понятия с меньшим объ­емом к понятию с большим объемом. Обобщение применяется во всех определениях понятий, которые даются через род и ви­довое отличие. Пределом обобщения являются категории (фи­лософские, общенаучные, категории конкретных наук). С помо­щью кругов Эйлера (см. § 2. Отношения между понятиями) изобразим графически обобщение и ограничение понятий.

Обобщение и ограничение понятий схематически можно изо­бразить так:



Рис. 8 Рис. 9

При обобщении отбрасываются признаки, при этом содержа­ние уменьшается, а объем увеличивается. При ограничении, на­оборот, к родовому понятию А добавляются все новые и новые видовые признаки(а, b, с и т. д.), поэтому объем уменьшается, а содержание увеличивается.

Операции обобщения и ограничения понятий следует отли­чать от отношений целого к части (и наоборот). Например, не­правильно обобщать понятие “городская улица” до понятия “го­род” или ограничивать понятие “педагогический институт” до понятия “факультет педагогического института”, так как в обо­их случаях речь идет не об отношении рода и вида, а об отноше­нии части и целого.

 




Поделиться с друзьями:


Дата добавления: 2015-05-08; Просмотров: 683; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.